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[Text] Editor's Foreword

Numerical simulation based on finite-difference methods oriented toward computer
applications is acquiring greater and greater significance in the investigation
- of physical phenomena. The nonlinearity of the processes and the corresponding
equations makes the computer experiment a powerful, and in a number of cases,
the only possible means of efficient solution of complex applied and theoret-
ical problems.

D This publication is one of the thematic collections on the urgent problems of
- applied mathematics published by the Institute of Applied Mathematics imeni
M. V. Keldysh.

Stability problems play an important role in the investigation of a number of
problems of modernphysics and in a number of cases they play the defining role.

Solution of the problems connected with studying the development of instabili-

ties of various types imposes rigid requirements on the numerical methods

and algorithms. Therefore a number of articles in the collection are devoted

to a discussion of the computer aspects connected with solving stability problems.
- These are the paper by B. D. Moiseyenko, L. V. ¥ryazinmov, in which a prospective
) algorithm for numerical simulation of the motion of an incompressible medium is
discussed, and the paper by V., M. Goloviznin, T. K. Korshiy, A. A. Samarskiy,
V. F. Tishkin and A. P. Favorskiy which contains a generalization of the variation
i approach to constructing completely conservative magnetohydrodynamic systems

to the case of three spatial measurements.

The remaining articles contain examples of a numerical solution and theoretical
study of instabilities in a medium.

In a paper by a group of authors, a brief survey is given of previously obtained
results pertaining to the numerical simulation of the Rayleigh-Taylor instability

in experimental glass shells investigated at the Physics Institute of the USSR
Academy of Sciences.

1
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A study is made of the results of the numerical simulation of the occurrence of
tornadoes as a result of gas dynamic instability performed by N. M. Zuyeva,
V. V. Paleychik and L. S. Solov'yev.

It is known that the hydrodynamlc approach turns cut to be highly effective in
many problems with respect to physical meaning. Accordingly, the collection con-
tains a survey by L. M.Degtyarev and V. V. Krylov of the algorithms and results
of numerical simulation of the self-focusing of light in nonlinear media obtained
using the hydrodynamic analogy for the Schroedinger type equation.

Recently the interest in studying the general laws of the development of instabil-
ity in a continuous medium in the nonlinear stage has intensified noticeably.

This has served as the basis for inclusion of new interesting results obtained

by S. P. Kurdyumov, N. V. Zmitrenko, A. P. Mikhaylov, et al., in the collection
pertaining to the formation and interaction of nonlinear structures in the peaking
mode. The conclusions contained here have a very broad range of theoretical and
practical applications.

A. A. Samarskiy
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HEAT INERTIA AND DISSIPATIVE STRUCTURES

[6. G. Yelenin, N. V. Zmitrenko, S. P. Kurdyumov, A. P. Mikhaylov, A. A. Samarskiy,
pp 5-27]

1. Introduction

In this paper a study is made of the phenomena of heat inertia accompanied by
the localization of heat and thermonuclear combustion in a dense plasma during
the development of processes in it in the peaking mode.

Analytical and multidimensional numerical solutions to the problems are presented
in partial derivatives, explaining a number of the peculiarities of development
of superheated and other types of instabilities in such a plasma,

It is demonstrated that heat inertia can lead to the metastable existence of in-
stabilities having paradoxical form of the region of localization ("thermal
crystals")., The conditions of the excitation of the combustion of a medium in
the peaking mode are formulated, leading to localization of the combustion in
individual sections in the form of structures of different types. It is demon-
strated that the resonance conditions of their excitation are determined by the
eigenfunctions of the nonlinear self-similar problem. Estimates are presented of
the region of occurrence of these phenomena during the processes of heating the
plasma by shaped laser radiation and during initiation of combustion in laser
targets. The relation of the described phenomena to the fundamental laws of the
occurrence and complication of organization in nonlinear media is indicated.

2. Metastable Localization of Heat

The process of the propagation of heat in a stationary medium with nonlinear
thermal conductivity in the simplest one-~dimensional case is described by the
equation:

o7

0 T
»t =gz (KI5 e

where T(r, t) is the temperature, t is the time, Og¢r<+» is the coordinate,
k=k(T)=kqr®, 0>0 is the coefficient of thermal conductivity.

Let at the boundary of the unheated medium

Tt t)=0 2)
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the temperature increase by the law

Tlot)=T.(4-t)", n<o, To=corst>0. (3)

>

On variation of time in the interval tg<t<tg the law (3) simulates the temperature

. buildup in the peaking mode with focusing time {the temperature going to infinity
t=t_..

£
For tg=—= the problem (1)-(3) is self-similar. The actual process, of course,
begins with a finite point in time t=tg#~-=. If the initial data for t=ty are
self-similar (for example, zero -— (2)), then a time is required for establish-
ment of the process and manifestation of its laws.

It has been established [la, lc, 4] that a defined class of boundary conditions
with peaking (3) leads to the appearance of the effect of metastable localiza-
tion of heat consisting in the following. For the initial data (2), the region
in which the temperature is nonzero does not change its dimensions during a
finite time interval (tgst<tg), although the temperature and the quantity of
heat inside this region of localization can increase to values as large as one
might like. The effective depth of heating of the substance by a heat wave (for
example, halfwidth) remains constant (the so~called S-mode) or it decreases
with time (LS-mode). For the initial data differing from (2) the indicated
properties are maintained in the effective sense (the temperature in the region
of localization 1s as many times the background as one night like).

The boundary conditions localizing the heat are characterized by the following.

For n<-1/0 localization is absent. The heat is. propagated to the medium in the
form of a wave with growing halfwidth; for the initial conditions (2) the wave
front moves with finite velocity (HS regime)., The external characteristic of
the HS-regime is convexity of the profile T0/2,

For n=-1/g, tg=-«, the problem (1)-(3) has an exact solution in the form of
the stopped heat wave (S-mode).

F{Q—t’)-‘/{(‘f"/'z¢)’/'; r<p, 4)
T(!,t')z 0, T >Up,

where r¢=/2koT00 (o4+2) /0 is the depth of heating determined by the properties of
the medium (Kg, 0) and the intensity of the boundary conditions (Tp). In the
S-mode the heat wave front is stationary, the profile of the value of T9/2 is
linear; on approximation of t to the time tg, the temperature and the quantity
of heat in the region Osr5r¢ approach infinity.

In the case of n>-1/¢ the heat is propagated in the LS-mode. In Figure 1 the
temperature profiles are presented at different points in time which were
obtained as a result of the numerical solution of the problem (1)-(3). The

x's denote the halfwidth; after establishment of the m7de (reaching self-similar-
ity) it is contracted. The profile of the value of T9/2 in the LS-mode is
concave.

) 4
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As was demonstrated in [4], the phenomenon of metastable localization of the heat
is retained also for assignment of a heat flux at the boundary which varies in
the peaking mode (the secondary boumdary problem), both with consideration of
the disturbances in the boundary mode and with consideration of the more complex
nonexponential dependence of the coefficient of thermal conductivity k(T) on the

temperature,

The conditions of establishment of the S and the LS-modes were

discovered for deviation of the initial data -from the self-similar and in the

presence of a nonzero temperature background.

In both cases, for establishment

of all of the peculiarities of the leocalization of the heat, it is sufficient
that the temperature at:the boundary, varying in the mode (3), exceed by an

profile.
problem for (1).

order the maximum value in the initial distribution (boundary or background).

The property defining the localization is the "convexity" or “concavity" of the
In reference [4, la] this is illustrated in the example of the Cauchy

Let at the time t=t) for -w<r<+= the following initial distribution be given:

oo

v
T (1~ 12l72.) ", Iels7,
o »

Treb) = i, )

In [4], on the basis of the comparison theorem it was demonstrated that the solu-
tion of the Cauchy problem (1) and (5) is majorized by the solution of (4)

(for r<0 in (4), -r is used instead of r), and, consequently, it is localized

in the region —Ip<r<rg in the time interval no less than

that is, T(r,t)=0 for [r’aro for totatytty.

Ze = b a'/(lx.(r;t)T,‘,,r) (6)

The same thing is true also for

- any initial distribution having fronts that coincide with (5) and not exceeding

(5) anywhere.

The lower bound of the localization time is estimated by (6).

The formulated statement strictly defines the class of "concave" temperature

profiles for the given medium (that is, for the given value of o).

Their locali-

zation time depends on the properties of the medium (kg, o), and also on the
characteristics of the initial temperature distribution rg and Ty

For a hydrogen-like plasma with particle density n (n=nj+n,, where n; is the
ion density, n, is the density of the neutral atoms, n,=ny is the electron

density) and

n-type thermal conductivitythe localization time for various

physical conditions is as follows:

B} Table 1
Target ng (e 3) na(cm'3) Tpew) ro(em) tx(sec)
DT-plasma 5-1020 0 103 8+-10"3 10~11
H-plasma 1015 0 1 10 2-10"3
Solar photosphere 3.1013 1017 0.5 2+108=2000 km 5-1014=107
- 1 year%
Intrastellar gas 10-3 10 10~2 3.1019= 6. 1p25=
) 100 parsec 10" years
- 5
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3. Development of Thermal Structures

The peaking modes can exist in a medium with nonlinear thermal conductivity
and in the absence of boundary conditions, as a result of the effect of nonlinear
volumetric heat sources [lb-g, 2, 5].

The Cauchy problem in the region —«<r<t for the equation

RT_

T )
O F = o7 (toTa—gT) *z.r") 2.> o, N

has a self-similar solution of the following type when g>1 for times txtp:
n
n
T, t)=9"(¢-t) #(8),

- | F- e (fin-07) s @

. -1 / _ 1rG-A
n=(1-p) "”j(”""}' 27-5)’

if the initial data T(r, to) have the form of (8). Here
- -1
é’ = tp ~ %'B-'(O}[ ?;. r/ ,(0; tu)_/. (9)

)

Here f(£) is the solution of the equation

cnf e mel e (2 g (10)
fr/’:/‘-'—o for § = L o° .

The solution of problem (7) for the initial data of another special type
T(r, t0)=T(t0)=const also leads to peaking conditions. This solution (homo-
thermal combustion) has the form:

n
Tte, ) -Tie) = [(p-Vgo (la-t)] [¢E))
where ty is defined with respect to (9) with £(0)=(g-1)"=£;.

The study of the stability of the solution (11) with respect to small values of
8T=A(t)exp (-2mira-1) indicates that for B<o+l it is stable for disturbances

of all wave lengths, and for B>o+l it is unstable for distéurbances of any wave
length; here the disturbances increase by the law ~(tg-t) N The homothermal
combustion for =0+l is unstable for disturbances with wave lengths greater than
critical )\>)\c=21n'io/(q9(c+1)); here the disturbances increase by the law

~(eg-t)™, ny=8rll-Oc/N21.

The study of the Cauchy problem for (7) led to establishment of three combustion
modes of the medium [1, 2, 5]:

For HS-mode (l<B<o+1) the heat is propagated to the cold medium in the form of
a heat wave with finite front, and for t>tg the combustion encompasses the
entire space.

FOR OFFICIAL USE ONLY
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For the S-mode (B+o+1) the solution T(r, t) is nonzero in a finite interval of
-r,<rir,, but Ty in contrast to the HS-mode does not depend on the time, and
remains ‘constant., At the same time the .heat is not propagated to the cold medium,
although in the combustion zone the temperature reaches infinite values for ttg,

For the LS-mode (B20+1) the heat wave fromt is at infinity, and the effective
width of the combustion zone (for example, the halfwidth) is contracted. Here
the temperature at the central point goes to infinity for t-g.

The study of the temperature profile is bas_%f on investigation of equation (10)
which is converted by the substitution x=f°"* to the equation of motion of a
particle in the force field

o 1 A
x? - mgaxc T oc '~ (art)(nae T 4 xx T ) (12)

In the case of the S-mode (m=0, the force field is conservative) (12) is easily
- integrated

A
£i¢)=x T (£)=[u'(.¢w)

71§ o
L(av1) FR i Npgy - ]
S”(Afr 70) ’ 1%

where 6 is the integration constant, and

is the so-called fundamental length. For the nonlinearity of the stage of develop-
ment of the instability of homothermal combustion, the dimensions of the combus—
tion regions are a spectrum of lengths Ag¢ArgLy, where on approaching the focus-
ing time this spectrum degenerates into one boundary of the length: Ip.

As the calculations show, independently >f the conditions ArO<LT and Ar0>Lr,

- where Ary is the region of finiteness of the initial temperature disturbance,
the solution of the Cauchy problem for (7) asymptotically arrives at one period
(14) of the solution (13). In this sense Ly is the "fundamental thermal length"
of the S-mode. The establishment of combustion in the region of dimension Ly
is illustrated in Figure 2 (here kg=1, qp=1; 0=2, B=3). For Arg<Ly first the
heat spreads, the region of combustion grows until its diameter reaches a value
Ly. For subsequent values of the time, the combustion rate increases by several
orders, a type of heat release flash occurs which is analogous to the phenomenon
of a chain reaction, but only for the case of a nonlinear medium.

The investigation of equation (12) in the case of LS-mode (m>0, negative
friction) led [1d, 5] to the detection of a set of combustion eigenfunctions

satisfying the condition fOf'=0 and f=0 for £+e. The number N of the eigenfunc-
tions is determined by the parameters of the medium ¢ and R by the formula
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- L] A7
/\/:L“«'["’T ”M,aﬁﬁ_o__f ' (15)

The first eigenfunction has one central peak; the high-order eigenfunctions con-
tain a number of peaks that increases with the number of the fupction. Figure 3
ghows the first four functions for the case 0=2, B=3.18. Here f=f/fg and
£=Ef00'5(3‘c"1) are plotted on the axes. The total number of functions for this
case N=13.

The self-similar soluticns of the LS-mode are self-focusing -- in the peaking
time all of the isolated points of the self-similar solutior, for example, the
local temperature peaks, "'converge" at the center of symmetry. The maximum temp—
erature distribution (for t+tf) has the form

2
;ef’:; 7ut)=Ce 7 y B> &7, (16)

where the constant C is special to each of the eigenfunctions (its value increases
with an increase in the number of the functions). This behavior of the solution
indicates localization of combustion and "cutting off" of the "tails" of the self-
similar solution. On assignment of finite initial data for the Cauchy problem

(7) in the case of the LS-mode, as the calculations show, the profile T(r,t) in-
side the region of combustion is close to self-similar and essentially distorts

at the boundaries of the region where T(r,t) vanishes, and infinite "tails"

of the self-gimilar solution are not realized. The study of [1b-g, 5] permits
indication of the value of L* of the resonance length of the excitation of
combustion in the LS-mode analogous to the valué of Ly from (14).

Ko arr-p
(8 ~art) [K 7 2 (17
cip-1) Vfo Tom -

The size of the localization region in the LS-mode depends not only on the prop-
erties of the medium, but also on the maximum temperature Top at the initial
disturbance. Figure 4 gives the numerical solution in the case of the LS-mode
(8=5, 0=2, kg=1, qp=1) demonstraiing the propagation of the region of combustion
with respect to the dimensioms LT and the heat release flash at this dimension
with*the appearance of the characteristic features of LS-mode. The dependence
of on Tn_ is illustrated in Figures 5 and 6 for the same values of the
parameters B, 0, kg and qn as for Figure 4. The small (T0m=1) value of Tpyp

led to a large value of Ly and merging of the local disturbances; a large

value (T0m=3) led to a small value of Lff‘ (L§<Aro) and . individualization of the
development of local disturbances.

4. Multidimensional Effects in the Heat Localization Pheromenon

Tn contrast to the one-dimensional case, in the multidimensional case the region
of localization of the heat can have a different shape (in the one-dimensional
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case, the region of space included between two parallel planes). In the three-
dimensional configuration the region of localization can be a closed part of
space of finite volume.

In the case of a medium without volumetric sources for special assignment of

the boundary with the initial conditions the region of localization is separated
from the cold space by thermal "faces" which are not deformed during a finite
time,

For example, in the three-dimensional case with special assignment of the initial
temperature distribution the region of localization can be an octahedron. The
four tetrahedral pyramids made up of the bases are the simplest (analytically)
obtained region of metastable localization of heat (the "thermal crystal").
Juring the localization time inside the-octahedron the temperature is nonzero
(the maximum temperature in the center), and it vanishes on its "faces." The
value of the localization time is estimated by the same formula as for the one-
dimensional case (6), where rg is the characteristic linear dimension of the
"thermal crystal" (see Figure 7).

In the case of the presence of a volumetric source, the multidimensional inter—
action of the regions of local excitation of combustion was studied in [6].
Depending on the degree of overlap of the regions of the initial temperature dis-
turbances, these structures either continue to burn im:‘lividually1 or they merge
into one structure. 1In the last case this merging can take place both
symmetrically2 and asynmletrically3 depending on the degree of symmetry of the
initial data (in the overlap of the initial combustion regions).

5. Localization of Heat in a Plasma with n~Type Thermal Conductivity

The boundary conditions leading to localization of the heat permits theoretical
concentration of any amount of energy in a fixed region of space and holding of
it for a finite time interval, Therefore it is of interest to estimate the
plasma parameters reached as a result of heating the plasma by a powerful laser
pulse in the mode with peaking, generating localization, for example, in the
S-mode [1la, 1g, 4].

Let the completely ionized DT-plusma (0=2.5) be heated by a laser pulse, and
let the laser emission .2 absorbed atithe boundary. For the estimates

we shall neglect the gas dynamic motion, the characteristic radiation of the
plasma and other processes. We shall consider that at the time tg=0, the flat
layer of material bounding the vacuum with an area s=r¢ begins to be heated.

Under the assumption that has been made, it is possible to make some estimate
based on the analytical solution of (4).

1See Figure 8.
2See Figure 9.

3See Figure 10.
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The establishment of the S-mode for 0=2.5 is guaranteed on satisfaction of the
condition tg c2103 where t¢ 1s the focusing time, tg . is the time of completion
of the laser pulse effect. Here ¢ is the time thez temperature Ty=T(0, tg_o) is
maintained which is reached at the time t=tg .. ‘For t. 2103 the ratio of the
maximum flux W=W(0, tg..) to the initial Wo=w(0, 0) is’ equal to Wy/Wg=l0~ to 103,
and half the pulse energy is conttibuted in time 5c&tg/200.

The effect of the gas dynamics is estimated by the ratio r¢,/r1-.A, where 1y 1s
the depth of penetration of the rarefaction wave calculated by the speed of sound
at the boundary.

The table of estimates is presented for the DT-plasma with density 2.10-3 g/cm3
and tf/ca—‘103.

Table 2
(1) (2) (3) 4) (5) (6)
] T"(RBB)'W.‘BT/Olz) T (cm) & (noer) | E,(nx)
I 1014 18.10°3 51073 1071
1015 |3,4-7072 6-107° 10
8 1016 |1,1-70°1 5,2.10°3 | 108
Key:
1. VNo
2. Ty(kev)
3. Wg(watts/cmz)
4, r,(cm)
5. e?nanoseconds)
6. Eg(joules)

Here E0 is the total enmergy input by the laser pulse.

As the calculations with consideration of the gas dynamic motion indicate [4],
it is not a theoretical obstacle for the manifestation of the localization of
heat on the basis of its inertia by comparison with the thermal process where the
latter develop in the peaking mode. It is demonstrated that for r¢,/rI~A>1 to 2
the gas dynamics in general are insignificant. For the estimates 1 to 3 of
Table 2 r¢/rrA<l, where the maximum value of r /rI‘A is reached in the first
example. The numerical solutions considering ghe gas dynamic motion [4] indicate
that for the given example the gas dynamics improve the localization -- the
temperature and localization time increase, the temperature profile becomes more
concave (a smaller mass is efficiently heated than in the stationary medium).

After the end of the pulse. the gas dissipates and is cooled. The shock wave
formed as a result of the fact that the heat wave "goes over" the density peak
and beginning to move after rearrangement of the temperature profile to "convex"
goes from the substance to the vacuum. This powerful shock wave can serve as the
sign of localization when it is detected experimentally, for in the case of the
effect of nonpeaking conditions on the plasma (for example, the laser radiation
power increases linearly with time) such a wave does not occur.

10
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6. Localization of Thermonuclear Combustion in a Plasma with n-Type Electrical
Conductivity

A8 was demonstrated in reference [le], the value of the resonance length (17)
can be used to formulate the thermonuclear flash conditions. Thus, the combus-
tion in a mixture of equal compositiocn of D and T takes place under peaking con-
ditions if the size of the temperature disturbance Aro>A5. The value of Arg

is defined by the following arguments.

Let it be possible to neglect the combustion of the DT-material and the processes
of radiation transport and consider the plasma as asingle-temperature, ideal

and staticnary medium. Then for the temperature range of 15T<30 kev the ignition
process is described by the equation

,aT- K, ’) ( rj)_T * __Z__D_7-.f___,
Q?_ °ox 2% ’*87'0 ’ (18)

where k0=8.1'103 o'l cmzsec'lkev‘2-5, g=2.5, q0=4.7'10503ec—1kev"4'5, f=5.2,
B=2.4-102 kev=3.6, b=3.6; p(g/cm3) is the density of the DT-mixture.

In the temperature range of 1-3 kev the source in (18) is close to the expression
qOTB. Since B=5.2>3.5=¢0+1, this source can, in accordance with l1lb-1lg. 2] lead
to localization of combustion on a defined length. For large temperatures
consideration of the term BTB in the denominator of the expression for q(T) in
(18) leads_to a change in the effective value of B gf in the notation

(T)=q_ ;T eff, Thus, for T=5 kev, q(T)IqgT?*! with qg%5.1-10%sec~lkev-2.5. For
q deff s s q qs dg
T>5 kev, Bogp<otl. Using these approximations and formula (17) the following
characteristics of thermonuclear combustion are obtained in the range of 1-10 kev
if it is excited by a disturbance of Ar0>Ag’=L*. The size of the region of locali-
zation of combustion Ary is given by (17) by the formula: AEJZO.S/DT noem

(on variation of the initial amplitude 12 she range of 1-3 kév). The combustion
is localized during the time At :10’6/pT0ﬁ sec. When the temperatures T~5 kev
are reached in the combustion process, the size and t?e 1ocalizatio? ime of the
combustion region are determined by the S-mode: Args %0.2/p0 cm, At,,‘S 38-10'8/pT355
sec. With further increase in the temperature, its profile inside the localiza-
tion region begins to be rearranged to convex, and for T>10 kev an increase in the
combustion region begins.

As was shown in [lé], the scales reached Atﬂ and Arg are such that for T<7 kev

it is actually valid to neglect the two-temperature nature and burnup, to consider
the absorption of the o-particles local. and not to comsider the neutron contribu-
tion.

Consideration of the volumetric radiation turns out to be necessary for reasonahle
temperature ranges (no less than 1 kev) and densitv ranges (compression no

greater than by 104 times). De-excitation is equivalent to the addition of the
discharge 2(T)=goT0-5 to (18), where g0=2.2-108 sec~l kev0.5,

For Tz3.7 kev, we set g(T)<q(T). If the structure of the thermonuclear combus-
tion begins to be formed at temperatures of no less than 4 kev, then the volumetric
radiation cannot extinguish it. In Figure 11 results are presented from the

11
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calculation considering the losses to volumetric radiation. The initial dis-
turbance amplitude *4 kev, 4ry®0.1 cm, p=20 g/cm3/

- On the other hand, there is a demsity range for which the hot region is optically
dense, and the radiant thermal comductivity is small by comparison with the
n-type conductivity. For T<7 kev, this corresponds to compressions of ~10
times with respect to the ratio to the density of DT-ice. In this case there is
no volumetric de-excitation.

As was shown in [le], the gas dynamic motion can be neglected if Tpn23 kev. If
at the beginning of the flash the gas dynamic motion of the DI-plasma to the
center (compression) continues, it can compensate for the losses to volumetric
radiation in an optically transparent plasma for T<4 kev.
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STUDY OF THE STABILITY OF THE COMPRESSION PROCESS OF THIN GLASS SHELLS

[Ye. G. Gamaliy, V. A. Gasilov, V. B. Rozanov, A. A. Samarskiy, V. F. Tishkin,
N. N. Tyurina, A. P. Favorskiy, M. Yu. Shashkov, pp 2864]

Introduction

In this paper a study is made of the stability of the process of compression of
thin glass shells which are considered in [1], [2] and are being studied at the
present time both theoretically and experimentally [3], [4], [5], [6].

It is known that high density of the material during hydraulic compression can be
achieved only 1if the initial nonuniformities do not increase during the compres-—
sion process to values that significantly disturb the spherical symmetry. At the
present time there are a number of theoretical-calculation papers in which the
stability problem has been considered [7], [8], [9], [10], [36].

This paper is devoted to the mathematical simulation of the effect of disturbances
of the various types on the process of compression of glass shells with parameters
taken from [6]. The basis for the procedure used in solving the equations is the
completely conservative difference systems described in reference [37]. The use

of moving curvilinear finite-differences in the calculations permits the develop-
ment of the instability to be traced to the stage where the defining effect comes
from the nonlinear effects. On making the transition to the nonlinear conditionms,
the growth rate of the disturbances decreases, which, in tumn, is felt in the high-
frequency disturbances for which the nonlinear effects appear comparatively early.

The results of the performed calculations permit determination of the number of
the harmonic which has the highest growth rate and initial amplitude of the dis-—
turbances for which the effect of the instability begins to be felt noticeably in
the parameters of the compressed plasma.

§1. General Statement of the Problem

1. The possibility of heating and compressing a substance to high temperatures
has been investigated in a number of papers by Soviet and foreign authors [11],
[121, [131, [141, [15]1, [16], [17], [i8], [19]. 1In references [1] and [2] it
was demonstrated that the prospective area here is the use of shells with high
aspect ratio. The simplest configurations of this type are a thin glass shell
filled with a low-density gas (see Figure 1 borrowed from [7]).

22
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The parameters of the shells studied in the given paper were selected close to

the parameters of experimental tatgets [6]. In Figure 2 we have the energy flux
incident on the target taken from [7].

Figure 2

2. For a description of the process of compressing the shell with the reduced
parameters, the hydrodynamic approximation is used. The n-type thermal conduc-
tivity, the phenomenon of the temperature discontinuity and ion-electron relaxa-
tion were taken into account. All the physical properties of the plasma were
calculated under the assumption of complete icnization. The corresponding system
of equations has the form:

: , 93, gdw i =o (1.1)

34Y -~ gradp (1.2)

8 5 =~ Pedit T+ i +dis G - (1.3

8.%?“'1’;&&17 +Q (1.4)

23

Tul

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300100002-5



APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300100002-5

PUK UFrLULLIAL UDL UNLI

P=Pe+F; , Pe=Pe(8,Te), F.=F (g,T.‘) (1.5)
) €o=Ea(g,Te) , Ei=&i(8,T) (1.6)

T VT K80 T
i (1%, V)T =K(&,T (L.7)
W’e =% (S,Te‘) W‘a'd're (1.8)

2 W
- Q=Q.8 TeTé

T ® (1.9)

- Here p is the density of the substance,

N .
¢ is the hydrodynamic velocity,

P, Py, P are the electron, ion and total pressures,
Te’ T; are the electron and ion temperatures,

€q» €y are the electron and ion specific internmal energies.
The system (1.1)-(1.9) was solved in the approximation of axial symmetry.

As follows from the experimental papers [6], [3] for the investigated energy flux
density the number of epithermal electrons is small, and it has no influence on

- the compression. Therefore the heating by the fast electrons was not taken into
account, and the thermal conductivity was considered to be classical.

Thus, the investigated approximation quite completely gives a qualitatively and
p quantitatively correct description of the processes.

§2. Nature of the Occurrence of Instability

1. There are two stages of the process where the motion is hydrodynamically
unstable. The first stage is acceleration of the heavy unevaporated part of the
shell by a hot, low-density ablation layer. The second stage comes when the
pressure in the compressed nucleus increases tc a degree such that it begins to
brake the denser shell. These stages are separated in time by the region of
stable flow with approximately constant velocity [see [41).

2. 1In a number of simplest cases, the estimate for the rate of development of
disturbances can be obtained analytically. Thus, for example, the analytical
solutions are obtained in the case where the disturbance wave length is large by

- comparison with the characteristic dimensions of the investigated subject [20],
[21], [22]. There are also a number of papers devoted to the study of the
behavior of an incompressible liquid in a comstant gravitational force field
[23], [241, [25], [26], [27], [28], [29], [38].

3. In contrast to the- classical situation, on compression of the shells, the
development of the instability takes place against an essentially nonstationary
background which is formed as a result of interaction of the nonlinear thermal

24
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and hydrodynamic processes. The investigation of the instability in the first
stage near the ablation boundary is also complicated by the fact that the
evaporated substance flows through the instability zone with high velocity, and
the zone itself moves through the mass deep into the shell.

The noted facts complicate the application of analytical methods and make numeri-
cal simulation -in practice the only method permitting successful solution of the
stated problem.

§3, Test Calculations. Choice of the Finite:Difference

- 1. When investigating the dynamics of the development of the disturbances by
numerical methods, the question arises of to what degree the correctly used pro-
cedure transmits the quantitative and qualitative nature of the growth of the dis-
turbances. In order to explain this question, a number of test calculations were
made including comparison with the known analytical solutions and calculations on
series of finite-differences becoming denser. The calculations demonstrated that
the numerical solution quantitatively and qualitatively correctly reproduces the
dynamics of the development of the disturbances.

2. As one of the model problems, a "study was made of the problem of the stability
of a thin layer of incompressible liquid under the effect of gravity [20]. The
gravitational acceleration is directed opposite to the y-axis (see Figure 3.

7 7 7 7 7‘/ .17 4 7 7 I;/I
Figure 3

On the lower boundary of the layer of liquid, the condition of nonpenetration
was given. The upper boundary was assumed to be free.

At the initial point in time the height of the free boundary of the liquid was
disturbed by the law

h=ho(1+acoskox) (3.1
here hg is the height of the undisturbed layer,
o is the amplitude of the disturbance,
k=2%/) is the wave number,
25
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A is the disturbance wave length.
The speed of the 1lijuid at the initial point in time is assumed to be

w=-aVghe Gin(Kx) (3.2)

V= akyVgho Los(Kx) (3.3)

For numerical solution of this problem, entirely satisfactory agreement was
obtained between the numerical and the amalytical solutions in the different
stages of development of the instability.

agess
0.480 0.67S 0.908 1.125 1. 330 4.575 1.900 2.003

.05

t
cin e B oW Ten b dan T

Figure 4

In the initial period of movement, the behavior of the liquid is described well
by the linear approximation, according to which the disturbances must increase
as exp(k/g—h—ot). In Figure 4 comparative graphs are presented for the growth of
the disturbance amplitude calculated by the linear theory and by the data from
the numerical calculation.
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In the later stage, the linear approximation loses its correciness, but for the
nonlinear problem the asymptotic regime exists [25], [26], 1271, [38], for which
the solution "peaks" directed upward move with acceleration close to the gravi-
tational acceleration. Figure 5 shows the arrival of the numerical solution at
this regime. In conclusion, Figure 6 gives the shape of the liquid boundary at
the time close to the time of reaching the asymptotic motion regime.

3. Satisfactory agreement was also obtained on numerical simulation of the prob-
lem of Rayleigh-Taylor instability of a fine strand of thread (see [21]). The
thread was simulated by a layer of incompressible liquid, the thickness of which
was appreciably less than the wave length and the amplitude of the initial dis-
turbance (see Figure 7).

o

4 p=0
P gy 0,
P=8¢

o

x
Figure 7

The gravitational acceleration was directed down along the y-axis. At the upper
and lower bounds of the layer the pressure was given: P=0 at the upper bound
and P=pg at the lower bound, p is the linear density of the undisturbed layer.
The thread coordinates were disturbed by the formulas

X = oo + 0 S (K IC.) (3.4)

‘d = QoS (I ) (3.5)

%0 igs the coordinate of the undisturbed thread. The velocities were assumed equal
to zero at the initial point in time.

If the thickness of the layer is sufficiently small, then the equations of motion
have analytical solution of the type [see [21D:

L= UCo + LSt (K o) (3.6)
(J = 0 CBY (K ICo) (3 7)

Here they acquire the shape of a cycloid. This solution will be valid until
t*: kacos ht*=1 when the cycloid forms a self-intersection.
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The results of the numerical calculation satisfactorily reproduce the solutions
of (3.6)-(3.7) to the time t* when the layer thickness increases, and cumulative
jets are formed (see Figure 8). The divergence of the numerical and the analyti-
cal solutions was 0.5%. Let us note that the appearance of cumulative jets was
predicted in [21].

4. For numerical simulation, the problem of the choice of the number of finite-
difference nodes is important. The use of dense finite-difference nets
unjustifiably increases the solution time of the problem, and when using 'a small
number of nodes, significant deviations from the correct value can occur. In
order to determine the optimal number of nodes, several calculations were made
of the compression of a glass shell described in §1, where disturbances were
introduced into the initial shape by the following laws:

ReRg(1+a - sin no) (3.8)
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n is the harmonic number,
A is the shell thickness,
o is the amplitude of the disturbance.

The disturbance amplitude o was taken equal to 0.01, and the number of the
harmonic, n=10.

Rmax Rmcn

Rmax"' le’n
_ 0.20+

0.401

5 10 15 20 ¢
- ~ Figure 9

The calculations demonstrated that with an increase in the number of finite-
difference nodes, the disturbance growth increases, but for a numbeiv of
nodes per disturbance wave length 2210 to 15, saturation of the growth rate
takes place (see Figure 9). Let us note that approximately the same criterion
was obtained in reference [31]. 1In the calculations described below, the number
of finite-difference nodes was selected beginning with this criterion.

5. The study of high harmonic numbers (n20) is possible when performing the
calculations in the sector with angular dimensions less than /2 under the
condition that the angular overflow of plasma during compression is much less
than the dimensions of the sector. On the lateral boundaries of the sector, the
equality of the normal velocity component tn O was given. In order to check

- whether this influences the nature of the growth of disturbances, the harmonic
was calculated with n=20 in the sector with its aperture angle 7/2 and aperture
angle /10 (see Figures 10, 11). A comparison shows that the qualitative and

_ quantitative nature of the development of the instability did not change.
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Figure 10

§4. Analysis of the Instability in a "Corona"

1. When studying two instability zones of the process of compressing glass shells,
the study of the instability near the evaporation boundary is of independent
interest, for the development of the disturbances in this zone can lead to dig-
turbance of the shell in the initial stage compression. The development of dis-
turbances on the inside boundary of the shell takes place at a time close to the
time of maximum compression, but in this case the growth of the disturbances can
lead to significant worsening of the plasma parameters.

2. When studying an instability near the evaporation front of the shell material,
the region of subsonic flow of the gas is of the greatest interest, for the dis-
turbances hitting the supersonic flow are carried away and cannot influence the
compression. The distribution of the plasma parameters with respect to space
near the evaporation boundary is formed as a result of the effect of a rarefac—
tion wave occurring behind the front of the shock wave going to the center and
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the thermal wave. The characteristic density distribution, velocity, tempera-
ture and pressure distributions of the plasma in the "corona" obtained from
one-dimensional calculations are presented in Figure 12. It is obvious that ~
the evaporation boundary and the maximm density gradient are located in the
region of subsonic flow of the plasma moving toward the center.

Figure 11

3. 1In order to explain the problem of stability near the evaporation boundary
it is useful to call on the stability criteria obtained in the linearized
problem both for incompressible liquid [5] and adiabatic and isothermal motion
of a compressible liquid [4]. According to these criteria, the flow 1s unstable
if the pressure and density gradients are directed opposite to each other, that

(VS,VP)<0 “n
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Key:
1. p, g/cm3
2. T, kev
3. km/sec
4. R, microns

- An indirect confirmation of the correctness of this criterion for a broader
class of flows is the solution of the problem of stability of a plane stationary
"corona" for identically directed pressure and density gradients. As the
results of the numerical calculations for the linearized system of equations
show , the initial disturbances damp in this case [see [32]).

Using the indicated conditions, it is easy to see from Figure 12 that the
instability zone lies between the maximum pressures and densities and is very

{ narrow ~0.2 to 0.3 micron. Beginning with the time when the outside boundary
stops evaporating, the situation in the "corona" becomes stable.

4. The effect of the dissipation and evaporation of the substance is most
strongly felt in the development of low-frequency disturbances, for which the
growth rate of the Taylor modes is low. The stabilizing effect of the evapora-
tion can be seen if we trace the development of the disturbance in the isolated
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Lagrange layer which initially moved toward the center, and then was captured

by the thermal wave, Figure 13 shows the trajectory of motion of this layer
(averaged with respect to the angle 0) and the relative amplitude of the dis-
turbance upon it (Rpax~Rpyy)/(RpaxtRy o) as 2 function of time. In this
calculation, disturbances were introduced into the shape of the target by

formula (3.8), o=0.01, n=10. TFrom Figure 13 it is obvious that until the
particle moves with the cold shell its motion is stable. As the thermal wave
captures the particle, the speed of motion toward the center decreases. From the
time of the beginning of deceleration, the growth rate of the disturbances
increases sharply, the maximum of which is reached at the time of halting of the
particle. Then, as the transition is made to supersonic flow, the growth rate

of the disturbance decreases. Let us note that in this version the disturbances
are concentrated on the outside of the cocld part of the shell and are almost un-
propagated inward, in spite of the fact that the disturbance wave length is much
greater than the shell thickness. This means that the high-amplitude disturbances

Remay Rmin
+Remi .
Rmagt Rimin R-srm W
T80
1"
SN
o~ 70
N
15%
60
107
50
7
10" 05 1.0 15 Z8 t MeEk @
Figure 13
Key:
1. R, microns
2. t, nanoseconds
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do not succeed in being propagated from the outer boundary to the inner boundary
as a result of the stabilizing role of evaporation, for all the new particles
of the outer boundary where the maximum disturbances are concentrated are en-

- trained by the thermal wave and are carried away without having significant
influence on the state of the shell.

Con T M2 oS X Ms T

6

Figure 14

5. In order to discover the effect of short-wave disturbances, calculations
were made with the shaped disturbances by the formula (3.8), a=0.01, in this
case the number of the harmonic was varied: n=20, 40, 60 (see Figures 14, 15,
16). For the harmonic numbers with n>20, the increment of the growth of the
disturbances 1s quite-large, and the disturbances penetrate deep into the shell.
The outside surface of the shell bends, which, in turn, causes bending of the
adjacent cold layers. However, the disturbances inside are less than on the
outer boundary, which is seen well by the distortion of the Lagrange lines in
Figures 14, 15, and 16. Here, the disturbances damp with.departure into the
shell more strongly the higher the number of the harmonic, which agrees quali-
tatively with the data from the linear theory.
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Figure 15

- 6. In order to study the interaction of different hamonic numbers, let us per-
form the calculation where disturbances of harmonic 24 and 60 were introduced
into the shape simultaneously (see Figure 17). From the figure it is obvious
that the disturbances of harmonic 24 only reached the outer houndary. Let us
note that in the calculation with disturbances of only harmonic 24 or harmonic 60,
the disturbance amplitude:at the outer boundary was much less, which indicates
the effect of the nonlinear interaction between the disturbances with different

- wave length.

From Figure 17 it is also obvious that the amplitude of the disturbances of both
harmonic 24 and harmonic 60 is approximately identical, although in the linear
theory the increment of harmonic 60 is higher. This is connected with the fact

that the development of the disturbances takes place in the nonlinear mode,
which occurs when the disturbance amplitude increases so much that

Ka >>1 (4.2)
A is the disturbance amplitude,
K is the wave number,
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Figure 16

For this mode the growth rate of the disturbances is saturated, and it is
approximately identical for all numbers of harmonics.

7. On the whole the instability in the corona is the standard Rayleigh-Taylor
instability. The amplitude of the disturbance increases by more than 100 times.
- The effect of the evaporation and dissipation leads to the fact that the
_ increments of the growth of the disturbances turn out to be somewhat less than
= the Taylor modes. This is especially felt in the long-wave disturbances which
cannot be propagated even to the shell.

The short-wave disturbances penetrate to the cold part of the shell, but the
depth of penetration decreases rapidly with an increase in the harmonic number.
The harmonics with n%¥15 to 20 can have the strongest influence,

§5. TFree Flight Stage

1. 1In the free flight stage (before the beginning of braking of the shell),
almost periodic fluctuations of the inside boundary of the shell occur, the

phase of which depends on the time, and the amplitude increases insignificantly
(see [9], [33]). The indicated results of the numerical calculation are in
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good agreement with the results of the analytical solution of the linearized
problem of instability of the spherical boundary of a gas bubble in an incompressi-
ble liquid [33]. These fluctuations occur as a result of adiabatic contraction

of the surface of the bubble on compression

1/4 ‘
A=Ao(%,)coé(‘.f' ¥,) cos (n o) (5.1)

From (5.1) it follows that at the time determined from the equation
r~ i/e
Ji 3 Re
(2K*i)?=(‘2‘)nen 2(t) (5.2)

the inside boundary will be spherical. A comparison of the result of (1)-(2) with
the data from the numerical calculation (Figure 18) reveals qualitative agreement.

.03

{6o+24 1)

.
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§6, Instability of the Inside Boundary of the Shell

1. Instability of the inside boundary of the shell occurs when the gas included
inside begins to brake the shell. The relative amplitude of the disturbance as

a function of time for different harmonic numbers is presented in Figure 19. A

comparison with the value calculated by the formula (see [4])

An = Ano' exp { 5’4‘%‘ g%dt}uz 6.1)

shows that the low harmonics ngl0 increase approximately with the same rate.

For n>12 the growth rate becomes less than the Taylor modes, and the harmonics with
n=20, 40 develop completely in the linear mode. The effect of the "nonlinear
saturation" of the disturbance growth rate is especially clearly obvious if the
relative amplitude of the disturbance is represented as a function of the

harmonic number, taking time as the parameter (Figure 20).
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2. From Figures 19, 20 it is obvious that for harmonic 10 the deviation from
linearity occurs only at the last points in time, and for harmonics 20 and 40,

the nonlinear mode comes in the earlier stages of motion. Let us note that the
exponential growth of the disturbances in the linear mode takes place while

AK<< 1 (6.2)
A is the amplitude of the disturbance,
K is the wave number.
The results of the calculations show that for the initial amplitwude of the dis-
B turbance o=0.01l this condition is violated already for n=10 by the time of maxi-

mum compression. Consequently, the saturation .of the increment with growth of
the wave number is due to the nonlinear effect.
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Figure 21

Thus, for fhe investigated shells with aspect ratio of 20, the maximum dis-

turbance growth rate is achieved for 15-20. The presence of short-wave components

in the spectrum of the initial disturbances is not dangerous for the investigated
- shells.

3. 1In order to study the effect of the disturbances of the intensity of the
energy flux, a calculation was made of a number of versions where disturbances
were introduced into the energy flux by the formula

o = o (W(4+ oL ocnshg)

The disturbance amplitudes o and the harmonic numbers n were varied within
various versions.

These calculations demonstrated that the disturbances of the energy flux lead to
smaller distortions of the inside boundary than the shape asymmetry. An obvious
symmetrizing factor here is the heat conducting equalization in the "corona."

Thus, a comparison of the maximum disturbance amplitude on the inside boundary
for 1% amplitude of the initial disturbance and the same wave length indicates
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that the shaped disturbances lead to amplitudes that are twice as high as the
nonuniformity of the fluxes (Figures 21, 22).

Figure-22

4. Let us discuss what changes in the state of the shell and the gas the
instability effect leads to. The relative thickness of the shell in the axi-
symmetric case increases by approximately 8 times by the time of maximum com-
pression., However, at this time the disturbance amplitude (with initial dis-
turbance amplitude of 1% of the shell thickness) becomes comparable to the thick-
ness. However, this fact still does not mean rupture of the shell, Indeed,
from the state of the shell at the time close to the time of maximum compression
it is obvious that the Lagrange lines corresponding to the inside boundary of
the shell are more strongly distorted than the outside lines (see Figure 10).
Thus, a significant magnitude of the disturbance on the inside boundary of the
shell indicates that part of the shell material has reached the inner cavity.
Let us note that the average density and temperature of the inside gas with
regpect to the nonspherical volume differ slightly from the corresponding values
in the spherical case (Figures 23, 24)., However, it is not necessary to attach
great significance to this fact, for the penetration of the shell material into

- the nucleus obviously leads to mixing of the nonperipheral layers of the gas

‘ with the shell material and to a decrease in the partial density of the internal

gas.

43

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300100002-5



APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300100002-5

PUR urriuvlabL UdE UNLX

25, V8 (1)

a4
a3

02

a1

15 16 77 18 ' 79 20
{ HCLEY

(2)
Figure 23

1. T, kev
2. nanoseconds

In order to estimate the role of the instabilities it is useful to compare the

energy of turbulent motion with the kinetic energy of the plasma in the given

calculations. The energy dissipated in the turbulent motion per unit time can be
estimated (see [34]) as

3
dEv __ SVt
—_— (6.3)
d T

here

vp=y2r is the characteristic turbulent velocity (see [351),

2y is the characteristic scale of the turbulence (in the given case, the maximum
- amplitude of the disturbances),

v is the buildup increment of the disturbances.
If the kinetic energy of the plasma

EL =4¢v’ (6.4)
Key: 1. kin
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v is the hydrodynamic velocity,

p 1s the gas density,

then é

JéiL ~r d £$’to

Exun (1) ve . (6.5)
Key: 1. kin

to is the instability development time.

e (1)
—vE

15 16 17 18 ' 19 ar
: t weer

K Figure 24 (2)
Key:

1. g/cm3

2. nanoseconds

Defining the values in (6.5) from the calculation, it is possible to obtain that
in the given case this ratio reaches 10%.
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MATHEMATICAL MODELS OF THE FORMATION OF TORNADOES AS A RESULT OF THE DEVELOPMENT
OF GAS DYNAMIC INSTABILITIES

[N. M. Zuyeva, V. V. Paleychik, L. S. Solov'yev, pp 65-105]

A study is made of the development in time of axisymmetric convective and helical

- instabilities of an ideal gas. By numerical integration of the equations of
hydrodynamics it was demonstrated that the development of the instability can
serve as the mechanism of gemeration of high angular velocities of the gas. A
study is made of the effect of the variation of the parameters of the initial
steady-state on the specifics of the process dynamics.

Introduction

If it is assumed that the rotating formations: of the atmosphere such as tornadoes
arise as a result of the development of gas dynamic instabilities, then, in par-
ticular, convective instability caused by the growth of entropy in the vertical
direction, Rayleigh instability connected with a decrease in the rotational
moment with respect to radius and helical instability caused by a decrease in
vertical velocity along the radius can be possible.

Each of these three problems can be formulated as the problem of developmeni of
an instability in the one-dimensional equilibrium configuration having axial
symetry. If we limit ourselves to the investigation of axisymmetric motions
in the first two cases and helical motion in the third case, the prcoblem of the
development of instability reduces to a two-dimensional problem for all three
cases.

In the investigated mathematical models it is assumed that during the development
of the instability it is possible to neglect all of the dissipative processes and
the thermal conductivity and consider the gas to be ideal. 1In the initial
equilibrium state the investigated volume of the gas is assumed to be included
within an impermeable cylindrical cavity. In this case the problem veduces to the
solution of the equations of Euler motion with boundary conditions of vanishing
of the normal velocity component. The time problem of the development of an
instability is solved on a computer with assignment of the two-dimensional initial
- disturbance. As a result of the development of the instability, the initial
equilibrium configuration becomes a "quasi-steady" configuration characterized by
concentration of the rotational moment and the presence of meridional motion.
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Chapter I, Axisymmetric Instability
§1. Statement of the Problem

Under the assumption of axial symmetry, the equations of motion of an ideal gas
in the gravitational field -g&, is described in the form [1]

g0, . = _—
;’L?[ fﬂ/&'.'/?v.-—'ﬂ, ‘;; 7 PV = 2, _5: s IS "
0’2/\- : ‘9,9 re P P

+WYVI /a e 2,3 2 oF ”ny /*5 T

where p is the density, p is pressure, ¥ is velocity, N=pp"Y, I=rv¢,

e T AR & X T

vy is the adiabatic exponent. Obviously, instead of N and I it is possible to use
arbitrary functions for them which satisfy the same equations.

When investigating the development of a-convective instability, we give the
initial vertical equilibrium state, which depends on one constant parameter
vo in which the temperature T=H p/p decreases linearly with respect to z:

: ¥

Uo _.7_7.- Zz [, P TN
(L‘; ‘//2,0 ’id _,/,,o)l’/ (2)

This equilibrium is_umstable if yg>v. If we take the density pg as one and the
speed of sound c0=\/yp0/po, then the initial density and pressure distributions

will be 5
Pl 18:)192] 28 P = *:;o" (3

As the boundary conditions let us take that v, vanishes at the boundaries

r=¢ and z=c; b, from which it follows that N=const for z=0, b, I=const for r=a.

For investigation of the development of the Rayleigh instability it is possible
to give the rotational velocity in the form

Vs; ENYA ’z[}’f‘,/ ;;é/”/,‘/)z‘g”] @)

In this case v,=0 for r=a=1, and for specially large n it is characterized by
one parameter y. If we neglect the gravitational force g and assume the entropy
to be constant, that is, p=pY0/y, then the equilibrium density distribution
corresponding to (4) will be

. Fren
S , P ? A
T P A ©
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The initial Velo_c_i;ty disturbance satisfying the boundary conditions vp=0 and
the equation div v=0 will be given in the form

ape 7/ ,;}’4{/ 7 ﬂlyu (1) 2 ___z: 5,7 J_j__
= ST Wy=-L %.. =28 (L a,)om - ©

- The parameter ) characterizes the velocity disturbance amplitude. The current
lines ¥=const are shown in Figure 5a.

In the problem of convective imstability the initial rotation is considered as
a disturbance. If we set ag=1l, then the problem will contain two dimensionless
parameters b=bg/ay and g. Here if we take the dimensionless values for the
speed of sound c(p=340 m/sec and the gravitational acceleration gp=10 m/sec, the
dimensionless unit of time will eorrespond to the interval Atg=34 g sec, and
the cylinder radius ap=11.6 g km, where g is the dimensionless parameter of the
problem.

§2, Conservation Laws and Energy of Instabilities

Under the adopted boundary condition the system of equations of motion (1) con-
tains the laws of conservation of mass, energy, entropy and angular momentum

~ .- g -£—- &v"- <) -'—'C (7)
10> ~Lo/?.fl/,<}/.1 %0 rodaty >olorst, pA> <j§§36bﬂff

The angular brackets indicate averaging with respect to the volume V=ma’b.

The development of the instabilities is characterized by the growth of the
kinetic energy of the instability

Vo 2
Wom e = Ycplut e ),

where, as the results of the numerical calculation show, the curve.wL}(lt) has
a maximum, that is, the growth of Wy is limited. A contribution to the energy

of the instability W_L can be made by the thermal energy WT=V€%:T>,_ gravita-
tional energy Wg=V<pgz> and rotational energy W€=V<pv2¢/2>.

Here we shall present some restrictions on the maximum possible consumptions
of potential energy wm=wT+wg+w¢ following from the conservation laws (7).

From the conservation of mass and entropy we have the conservation law
<p:L Y>=const, by using which it is possible to obtain the limit on the thermal
energy flow rate [2]

_ eV oo P (8)
A‘T%.-- 0"" {1 /O} </G W",.d‘/)o )
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defined by the initial distribution of the pressure p. Hence, for the
equilibrium distribution (3) we obtain [3]

\L 77 LAtYn A ),
- ;3{‘/ /fg/ [ /,,“:/{',7} I p (8a)

where n=‘Y0/('Yo-1). For V=t 2 Y—3/2, v9=2, g=1 the inequality -6Wp<0.116 is valid.
For small g we have -8Wp Vg“/24. 1In order to obtain the dimensionless formula,
the righthand side of the expressmn (8a) must be multiplied by poc% and in it
it is necessary to replace g by gobO/

If we neglect the variation of the density p, the gravitational energy does not
change, but the law of conservation of angular momentum leads to the following
restriction on the rotational energy consumption

1 P - Zl'l 3
-(Jh = 2/\/"2?’ _ijz‘z /y 9)

Hence, for the equilibrium distribution (4) when n>>1, in the case of p=const,
we obtain

- W 02 (E‘Eﬁ’&+l) (9a)
Yoo 36 4 3 2

Consequently, for a parabolically decreasing anglilar rotational velocity

v /r, (o==1): =-8W /W <<1/3 and for parabolically increasing (a=1):
- W ?W¢0<1/51 In thg case of uniform rotation \)¢—const the formula (9) gives
-5w¢<0, that is, in this case the rotational energy can only increase so that
the uniform rotation is the stabilizing factor.

§3, Steady-State Axisymmetric Configuration
Under the assumption of axial symmetry 3/3¢=0, and under the condition of

stationarity 3/3t=0, the meridional velocity components are determined by the
current function ¢(r, 2z):

=L W =13 (10)
V, = — L, Vp =
z pr ar’ r pr z

there are three integrals of motion
VNS 51"} Z?/ //5‘/, f}_ [: N 4/}*,_ (j( &,"' 11

expressing the constancy of the entropy, the angular momentum and the
Bernoulli integral on the current lines y=const. The function Y satisfies the
equation [4]

- N S s R SO LR L (12)
- Y 2 2 o - e
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[word 1llegible] arbitrary functioms x(¢), N(¥) and v(y).

Equation (12) is simplified significantly for za incombustible medium

L - S . et
o I Y~ (12a)
IO T AR g = V.

It is possible to construct the exact solution of (12a) which satisfies the
boundary condition $=0 for r=a and z=0; b. actuwally setting [formula illegible],
v=const, we obtain the linear equation with separated constants, the solution of
which

o a5 P
Iy LT e TR R+ o
o 2 ,’s,ﬁ-Z" VAR ¢ I AR (13)

[illegible formula] is the first root of the Bessel function J3(x), and vy is
the peak value of v,=v,(0, b/2). Here the azimuthal velocity and the pressure
distribution are de%ined by the formulas

| 7w (gt |
coen ‘_‘..’r‘ ";:;:7*" LZ‘?‘; :-,."7‘35 = Ot (14)

The solution obtained is characterized by proportionality of the maximum values
of the angular rotational velocity Vg and the vertical velocity vy at the point
n=0, z=b/2:

V = Ly I
4 2.’ o’ *60:!7/:; (15)

The angular velocity distribution v¢(r) and the pressure distribution p(r) for
z=b/2

Ieg Vel o

Vp=2)/ ]
" Tyt

=% :3'75’[/7 Zl/iag—?—/ 1+ _.Z;;Z_a‘j J /?.(;'3;_2/" (16)

are pre:ented in Figure 1 for a=b=1, vp=1, p0=5.
§4. Linear Theory.

In the simplest case a tornado is an axisymmetric steady-state configuration.
Our problem is investigation of the process of formation of this configuration
from the initial steady-state configuration without meridional welocity as a
result of the development of the instability. The linear theory of the instabil-
ity of the rotating configuration is a quite complex problem as a result of the
two-dimensionality of the initiai configuration. Here we shall discuss two
limiting cases -- the problem of stability of the equilibrium configuration with
dependence only on z and stability of the steady-state rotating configuration
with dependence only on n. In the following section a study is also made of

the stability of the two-dimensional steady-state rotating configuration within
the framework of the variation problem.
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The equations of motion linearized with respect to vj (L) [illegible section
. end of p 71 of source].

- 1. In the case of equilibrium configuration with 3/9r=0, the solution of
equation (17) has the form

A (), Ve=FlE) T (en),
where
. f / oy b
DR _ { x Jff C@ﬁiﬂ‘“
= 5 z_ﬁ-f;,' ) =5 A;‘gf%z;_‘ﬁ;a o (£,

and f(z) satisfies the equation

o R

: ’ 2 :’A//
(:”..2’62)’{1"*"(%:7;%?')‘ prad zﬁeﬁiw‘*}*—”:

! AL

where c2=yp/p, and the boundary conditions £(0)=£(b)=0.

Thus, the dependence of the eigenfunctions on r is defined by one parameter

to the

(19)

(20)

(21)

: k=x,./a, where i are the roots of J1(x). From (21) we have the known condition of

Schibrtzschild stability N1>0 (see [11).

2. 1In the case of the rotational configuration with 3/32=0, the solution of

(17) has the form

. von - Hohoskz,  Va=FYSinkR,

where
o / 2 3[ u)‘ /
e AT ‘:Zc_td/ﬁf, . o L ERIEPOS i
FTTE e 92 " 2 Se 2o o* ’

and £(r) satisfies the condition
!

Loet F(P_ A HRVE (e RVe) K]
- ‘3—) RE: /0"'[ (2 *(,c"c"'—t;/ Ec"—w_]}’['f”

- with the boundary conditions £(0)=£(a)=0, the parameter k=mm/b, m=1,2,3...
From (24) we have the stability condition [4]

Lot Ul - prigt /et >0,

(22)

23)

(24)

(25)

which, considering the equilibrium equation it is possible, analogously to the

preceding case, to write in terms of the "frozen functions" I=rvy and K=N"

1/y
=pp'1/Y in the form (I*k)1>0. 1Im the case of constant entropy K=0, and also

for an incompressible liquid y-=, the stability condition becomes the Rayleigh

number (12)'>0.
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3. 1In conclusion, let us construct the class of stable rotating configurations
localized in space. Let us represent the condition of stability (25) in the

form i1
i [2%pn" %)
// ) ] =2 (25a)
and let us set
, a /'/// P
— =& 7 /1" '2‘:
L Y 4 J, 26)

where €>0 is the stability index equal to e=(1—1/y)pov02/2, where the character-
istic scale of the pressure variation p(r) is taken as the unit length. For
Pg=1, pp=Y, according to (26) and the equation of equilibrium p'=prvZ, we obtain
the distributions vﬁ(r) and p(r) in the form ¢
- T Wy B Gl Y
£ = L zY

B o
- -4 4 % J/’l' ,
[ 5L vi2anctys™ LLEE)) ey, @7)

Lo/ 1 eh o
J‘%_”_— )i ) FE

where p(r) is an arbitrary function., In the obtained class of one-dimensional
configurations which depends en one dimensionless parameter v, with an increase
in v, the stability increases, the depth of the hole increases p(r), and its
radial dimension decreases. If the characteristic radius of the configuration
rg is dimensionless and R is dimensional, then the dimensional angular velocity
of rotation in the center v0=vc0r0/R, c8=yp0/po.

2
Y s a’-__
é’m/o/—a ‘/ZQz.L.z.j z

In Figure 2 we have the stable equilibrium distributions of v,(r), p(r)
described by formulas (27) for p=3/2, y=3/2, 1 for values of 2he parameters
v2=l, 2. The configurations more concentrated and with greater angular velocity
of rotation are more stable.

§5. Variation Principle

For investigation of the stability of steady-state rotating axisymmetric
configurations it is convenient to use the expression for the variation of the
potential energy 8w=zzfpv21dv. Multiplying equation (17) by pv¢ and integrating

over the volume V, we obtain

LAy 2yt iR Al adf L
é‘h/:ﬁfﬁ’ f)pies’s / j/’ Ty Z/‘?.‘ P S(YYL (28)
! f : _
Minimization with respect to gk)-‘pf;pZF gives
ey Fa ol EVR)y W, (30)
i e ol Bve s
| el T T Ao

In the limiting cases of one-dimensional equilibrium 3/3r=0 and 8/9z=0 the
dependence of the eigenfunctions on r and on z is known (see (19) and (22)) and
equation (29) permits expression of v in terms of v, or vice versa
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£ o 2 . £ o 79}’
/,',' ,(r.;i‘z' B &}"-{Z,’ = L‘;,;-/l:‘ (31

Substituting (31) in (30), we obtain the variation expressions for the minimum

square frequency w® for both

-

gl dm—e

JIrt

/'.‘
’
l

!
A
/
&

)
Iy

limiting cases

’

4

’

'y
o LA (32)
i T T
"C)I,;V"..’ _,7 (/’,-. i
BN Y foonz
R o

Thus, in the limiting cases the increments in the development of the stability
are expressed by the integrals of one function f(z) or £(r).

1. For equilibrium configuration p=po(p/DO)Y0, subst
of (32) f(z)=sin mmz/b, k=)&r{a and for simplicity neg

01/Y we obtain

where Xy
development of the stability
by the dimension n.

the maximum increments.

are the roots of the Bessel function (J1(x).

Thus, the eigen
direction Z and having a large numb
With an increase in the ratio a/b th

ituting the first expression
lecting the variation of

(33)

The increment in the
>y is maximal for the mode =1 and increases
functions not having nodes in the "main"
er of nodes in the secondary direction r ‘have
e dependence of the

for vy

increment on m and n is intensified.

2.,

o

Inasmuch as in this case I'<0 only when rl>a

In the case of a rotating configuration let us consider the distribution

W, w3(2- £ a). (34)

2/n, the eigenfunction corresponding

to the maximum increment must be localized primarily in the region r>a 2.
Therefore we shall select the function

Spol=

which corresponds to the basic mode with

o~

>

Ly
J

s fv‘f/j_ Zf/:'? .'r)~ (35)

spect to r and find £ from the condi~

tion of localization of w“. Neglecting p Y in the second expression of (32)
we obtain
(L) e
V2 J /¢ Al A
- T T anh
(' s ).,_E‘r.
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The determination of the integrals for f(r) defining in (35) leads to the following:

A £ Lrp

[three words illegible] & gives 2=4(1+/2) [letters illegiblel.
Thus, setting [formula illegible] and negiecting the variation of p, we obtain

=L IEEE (36)

By complete analogy with the preceding case of (33), the increments of the basic
mode not having nodes along the main direction r increase with an increase in
the number of nodes m along the second direction z.

3. In the general case of two-dimensional equilibrium, assuming smallness of the
derivatives with respect to z and with respect to r and selecting the dependence
of v on z in the form of (22) and also setting p~ pYO, we obtain

)} pé. 2) 2
) Lot/ - o
- Si754 43)

where k=mm/b.

a) For the case of uniform rotation I=v0r2, selecting the trial function
f(r)=rJ;(xy,r/a), we obtain

A o 2
% E{Z’éﬂﬁ;‘? (7- 4 ) i (38)
- e ezl E2rimPat

Thus, the uniform rotation is the stabilizing factor and leads to a sharper
increase in the increment with an increase in xj,/m.

b) In the case of destabilizing rotation (34), the use of the test function (35)
with 2210 leads to the expression

Wl (1 G R e T )2 Vei/z )
7+ (/"’7‘7_/75’)”

Consequently, if the convective increment of the development of the stability
predominates (l—Y/yo)gZ/c2>v2/2 then -w? decreases with the mode number m, and
otherwise, -w?2 increases with m.
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§6. Results of the Numerical Calculation

In the simplest statement the problem of the development of a convective instabil-
ity contains three parameters: the mismatch characteristic Yo~Y» the size ratio
b/a and the gravitational acceleration g.

In order to study the dynamics of the development of a convective instability,
determine the role of the above-indicated parameters and also to discover the

, effect of the initial, uniform rotation on its development, the system of equa-
tions of ideal gas dynamics in the cylindrical coordinates (1)

D, a— - oy 3
. S e pars 0, [_,y + FVN= 0 J(;Z*- UVI=4
L - P , b/
P e d D 7 g ,LF D}‘ = £ '_ﬂ.g—'
= A 7 cl'z::" ':5 v)z Pl 4. 3, UZL W Pu’g L/l) U’ﬁf r?

were integrated numerically in the region:

ZES P O 22 8

b4

with the following boundary conditions:

For 2=-p,; 3 =0 I=0, c;,"/.}" R s
For 4oy ’/‘, b, L= Congz
For g=.0. 3= 47. NECorsit

For #-,0"  az O, 4=CorrSit

The initial equilibrium state was described by the density and the pressure (3)
. 7 .
ke 14 ’ 2] B- O = L

=[1 R ///I}‘,)‘r’g__]ﬁ';, / Y

depending only on the coordinate z, that is, the height. The initial velocity
disturbance was given in the form ,/_ 3. 2/ ° 42180 75/ 6 :
A 0T ‘ .

cen AL A S 24
Lo T 'T:I-T.,‘“ "—.) 7-. Z?*_*/)L"g P
. P , 257 T
- AT ‘ ,15. :g?J?.Z( 7 - L Yorpm - ’— cy (40)

the current lines of the meridional velocity ¥=const are depicted in Figure Ea.
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Figure 4a

A series of calculations were performed with the following initial conditions:
Versiow1 Jo=2; y=45; 9L Vo=0; A=-8 L 0L =L
Version IL ),z2; p=15; 9=1; Vy=g1;A=- 507, =1, =1
Version III%:;g"x:ﬂ.f,'oo:_/',‘ '))0-_-0,9/"),,-‘-'—5,0/; a=., f_:/'
Version IV J;:/,E;/:/,.S';g:().53)1,=ﬁﬂf,’ A=-401,a=7, £=1
Version V. [fo=16,[=15,9=8; V=0, A=-40; =7, £=02
The versions I and V were considered without nucleating rotation, and in the
remaining versions, it was present.

61

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300100002-5



APPROVED FOR RELEASE: 2007/02/08: CIA-RDP382-00850R000300100002-5

FOR OFFLICIAL USE ONLY

Figure 3 shows the initial distribution of the values of p, p, T, n for versions
I,1I, III, V. Let us note that in all versions the entropy decreases with height.
This indicates that the selected equilibrium state is unstable, for the known
condition of absence of convection is reduced to the inequality dN/dz>0

(see [11), that is, the entropy should increase with height.

The results of the calculations are presented in Figures 4-11. Figure 4a _shows the
variation with time of the kinetic energy of the instability, .WL=(1/2)r(vr+v§)dV

for versions I-IV. For all versions an increase in the energy to some maximum
value is characteristic, the value of which is determined by the parameters of

- equilibrium configuration. It is obvious that as Yo=Y (I1Ic) and g(IVe)
decrease, the maximum decreases, which indicates the development of the instabil-
ity takes place with ever-decreasing rates.

Fronm the energy graph W, for versions I and II it follows that the development

of the instability takes place nonmonotonically and that the existence of new
peaks with smaller amplitudes is possible.

In Figure 4b a graph is drawn of the variation of the kinetic energy W, for the

versions V (b/a=0.2). It is distinguished from the preceding versions by the
existence of the second peak, the magnitude of which is greater than the magni-
tude of the first. This is connected with the peculiarities of the development
of the instability in a given version. This will be discussed later.

Figure 4c shows the dependence of the energy of rotation W¢=(1/2)Iv;dV for the

- versions II, III, IV. This energy also increases by comparison with the initial
value, just as the energy of the imstability W where their growth is related to
each other. The potential energy of the equiltbrium system outputs 2 defined
quantity of energy for the development of the instability. which is distributed
between W_L and W¢.

In Figure 4a I the graph pertains to version I in which there is no rotation,
and graph II, to version II differing from I only by the magnitude of the rota-
tion., It is obvious-that in the latter case the maximum W_L is less, but in this
case the energy of rotation W¢ has increased (Figure 4a, ID).

- The growth of the kinetic energy W_L=(1/2)I(v%+v§) dV with development of convective

instability indicates an increase in the meridional components v, and v, of the
velocity. In order to present a picture of the motion of the gas as a whole, the
current lines ¥(r,z)=const were constructed where the current function

¥(r,z) was approximately defined by the formula

oy A / {'
;/._/./ Z, ’7_*’—:\/ /ﬁ.')?' Z/; Q/Z , (40)

which is valid on neglecting 8p/dt.

Figure 5a shows the current lines for the initial disturbance, and Figure 5b,c,d
the current lines for versions I, IIL, IIT at the time corresponding to the middle
of the decrease in kinetic energy W|. It is obvieus that these families of

lines are topologically equivalent ~“to each other.
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In Figure 5e, f, g, the current lines are constructed for the same versions, but
at later points in time. Here the topology of the current lines is different.
Difference 1 is manifested in the fact that in .versions II and III, a new family
of lines has appeared in the vicinity of the axis. This is the rotation effect,
and it does not exist in version 1. This is related to the fact that the

- centrifugal force 12/r3 enters into the equation for the v, velocity component
as a term. With an increase in the rotational velocity in the vicinity of the
axis this force can become defining, which leads to motion of the material from
the axis.

The difference IT is that in version III of the time t=41.7 instead of one large
vortex, we see several smalier vortexes, which obviously is connected with the
development of the higher modes.

The tendency toward formation of such a structure is also to be seen in
Figure 5 e,f.

Figure 5a depicts the current lines for version V. In this case a multimodal
pattern of the current line is developed in the radial direction in spite of the
large-scale nature of the initial disturbance. The process of formation of

this structure takes place in several steps, in connection with which the graph
of the variationof the kinetic energy has -the form differing from the other ver-
sions which was discussed (see Figure 4b). The peculiarities of the development
of version V are connected with elongation of the investigated region in the
radial direction b/a=0.2,

In Figure 5a,b,c,d it is obvious that in the development of convective instabil-
ity over a sufficiently long time period, unidirectional motion of the substance
occurs. Let us consider how the entropy N and the rotational moment I "frozen
in the substance” behave in this case, dN/dt=0, dI/dt=0.

Figure 6 shows the evolution of the isentropic surfaces N=const or version II.
For version I, III, IV the picture is analogous. Since unstable initial
equilibrium configurations are considered, as was noted above, they are character-
ized by a decrease in entropy with an increase in altitude (Figure 6a).

During the development of the instability, the lower layers with high entropy
rise upward and, on the contrary, the upper layors with lower entropy drop down-
. ward. A complex mixing process takes place, that is, the system strives to

- convert to the stable state characterized by an increase in entropy with height.

Figure 7 shows the evolution of the surfaces I=rvg=const for version II which is
characterized by elongati i toward the z axis of the surfaces of the level of
rotational moment, which leads to an increase in the rotation rate in its vicinity.
This is clearly to be seen in Figure 8 where the profile of the azimuthal velocity
v', is depicted for z=Q for versions II, IIIL, IV at the times corresponding to

the greatest elongation. Let us note that in version ITI larger azimuthal
velocities are achieved in the vicinity of the axis than in version II, in spite
of the smaller nucleating rotation. Thus, at the point- r=0.025 for version ITI
this velocity is 0.26, and for version II, a total of 0.05.
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Figure 5h

Figure 9 shows the variation with time of the velocity Ve for the versions II, III
and IV at the point z=0, r=0.025.

For all three versions the initial increase in velocity to some value is initial,
- and then a difference appears in the behavior of Ve

Thus, in version II it decreases to zero and stays at this value at the same time
as in version III it fluctuates near the value of 0.08.

Along with the azimuthal velocity vy, the behavior of the vp-component of the
velocity on the axis is also of interest. Figure 3 shows the variation of this
velocity with time at the point r=0, z=0.5 for versions I-IV. 1In all versions
initially this velocity is positive and increases with time, and then, just as in
the case of azimuthal velocity, a difference appears. In version I, v, remains
positive; in versions II and III, it changes sign, and in version IV it
fluctuates near zero.
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The density profiles of the pressure, temperature and entropy are presented in
Figures 1la and 11b for version IIT at the time t=66.2 for values of z=0.2 and
z=0.8, respectively. It is obvious that at z=0.2 the temperature and entropy
have decreased, and at z=0.8 they have increased; for z=0.8 the entropy has
become larger-than for z=0.2. It is possible to note that the profile of all
the variables, excluding the vicinity of 0, are almost constant.
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Thus, the numerical solution of the nonlinear problem with given initial dis—
turbance leads to the conclusior. of the possibility of generation of large
angular velocities of rotation as a result of the development of convective
- instability in the ideal gas. The investigated mechanism is based on the develop~
ment of an instability of meridional motion which leads to scattering of the
rotational moment rv, to the z-axis from the entire volume where the instability
develops. TFor a suf?iciently small ratio a/b in the nonlinear stage, roughly
speaking, the main eigenfunction of the limear boundary problem develops, and
for large a/b, higher radial modes develop.

The investigated mathematical model obviously permits qualitative explanation
of the occurrence of tornadoes in the atmosphere as a result of the difference in
convective instability.
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Chapter II. Helical Instability of a Cylindrical Gas Jet
§1. Statement of the Problem

Under the assumption of helical symmetry, the equations of motion of an ideal gas
can be represented in the form :

_ ,.(-?’/:.1 . - 9’/1/ -~ T e 41
ey ey dp V=0 h “2;";.' ’ VV,/‘/: &y '—.-,:, +YV]= (C", (41
(-j.‘_z:; 7 - .,.’i __5 - :_y‘—_.. (5'-'_2 2/" be R ‘
4 o7 /y‘vZ?, = ‘/" q’— 5 + 4” L C¥ s ,'r:‘,. ,:,—-.;.. L?‘_

where
L Vprd ¥l , BFPAZ, A=2TYL oS

-~

o or B S Ve VB alipriE £ & it P TR
et 0"?;/ 3 ‘“‘15)5?’ aijar” =§/’ S e ey g; ?(ZQ),

We shall consider that in the initial steady-state all values depend only on r,
and the equation of equilibrium p'=pvy/r is satisfied. As the initial disturbance
let us use the velocity 3 satisfying the condition div V=0 and described by the
current function y=Ar"(1-r2)sin ml.

On satisfaction of the condition of periodicity in the length of the cylinder L
and vanishing of the normal component of the velocity vy for r=a, from the
equations (41) we have the laws of conservation of mass, energy, entropy and

momentum:

— Joelv-mst. [l 5+ EXJaVelansis [pAa-lonst [praveconsts D)

The presence in the initial steady-state motion of both velocities vy and v,
is a significant difference from the preceding problems which leads to the
possibility of appearance of complex eigenvalues of the frequency uw.

§2. Linear Theory

The linearized equations (41) for cylindrically symmetric stationary configura-
tion reduce to one equation [&4] for rvp=f(r)cos mb:cos wt:

_ (LLyey) oyt e (A2C'y), Y2 g 43)

where

A= . . ip 24 U Ve 2
/9-./+,(zbf (/y—d?/,;- %y, S:._,.wézfy, 7-//—35~~ﬁ—7/‘?,4 = l;;—o.
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We shall limit ourselves to the case v =arv, where the current lines are helical

lines 6=const with constant pitch. Then at the limit w*0, equation (43) becomes

g;_zfjaz@; mpvg [/ﬂ“} "t Vo) /4" /f://]} 420

(43a)

Hence, we have the required stability condition of [5]

v [LJJ f/zzzfu}/tz ,;/" |2,

(44)

in which the term .N' describes the stability condition with respect to the
convective transport to the centrifugal force field, and it disappears for an
incompressible liquid (y+=). The remaining terms are caused by instability as a
result of J=rot V#0. The stability condition (44) can also be represented in

the form
{IZ/V —W) '~ 2, (44a)

. where it is expressed in terms of the frozen functions N and I.

For the steady-state configuration p=const.

2

- WE’=‘{_Z€ 'V;',=a(z//—23), ,O:/.)a,t%[f—//_ ZZ)"J (45)

we obtain the following expression for the stability criterion (44)

-_{fo(aﬂ‘! {.l 22}370 (46)

B dc®

Here the first term describes the destabilization as a result of the decreasing
longitudinal velocity vz(r), the second term, stabilization caused by an increase
in rvy(r), and the third, convective instability. If the inequality (46) is not
satisfied in the entire interval 0<r<l, then unstable eigenfunctions exist which
encompass the entire cross section 0O<r<l,

Let us consider the equation (43a) for the case v2<<c2; a2r2<<1 and, limiting
ourselves to weak instability, we set v,=l-er, v¢=ur(1—er), where |e|<<l. Here
(43a) reduces to the equation

(JJ[) [ R/ /éfo( =, )}f=£ (43b)
the solution of which is expressed by the Bessel function Jp(kr). The natural
values of the frequency w for the boundary problem f(0)=f(a)=0 are defined by
the formula

2
) A 2KE | 2 ,/‘—"5*’(2, 47

- ” Xrnn Xm
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where X  are the roots of Jp(x). Since for e>0 the frequency w contains an
imaginary part, there is an instability caused by a decrease in vz (1).

§3. Energy Limitations

The kinetic energy occurring on development of an instability has as its sources
the consumption of thermal and kinetic energy of the initial stationary flow.
Let us represent the kinetic energy in the form

We= Ssprir=Lfspri 7 +<p¥i7 <PV >3, “e

. where v =(v¢—urvz)//§, M |=(vz+arv¢)//§=1//—, and the provisional brackets indi-

cate averaging over the volume v=ralL. If in the investigated steady-state
ve=0, VJ—"-'O, obviously only the longitudinal energy can be expended

W) {=(V/2)<pIZ/B>. Using the law of conservation of momentum (42) and assuming

the density distribution p is invariant, we obtain the following restriction on
the maximum possible consumption of the longitudinal energy

2
- ‘l/_(@&ff}_ <pIL> ) (49)
1=a <pp>lo

An analogous restriction on the consumption of the thermal energy caused by con—
servation of mass and entropy has the form [2]

—A“M.s—d%—(</o>—</o'/y7’/)d (50)

For stationary configuration (45), assuming for simplicity that a2a2<<1, we
obtain

V.. 2 v ¥
-SW, =57 Yy _msg{}é@ggf_a}’. (51)

Thus, in the investigated case basically the kinetic energy of longitudinal
motion is expended.

§4. Results of Solving the Nonlinear Problem

The system of equations (41) was solved by numerical methods in the region
0<r<l, 0¢z<2m/a under the condition of periodicity with respect to z and vanish-
ing of vy for r=l. The initial stationary flow (45) for pg=pg=0=1, v=5/3.
As the initial disturbance, an additional velocity ¥ was used_which satisfies
the condition div v=0 and described by the current function ¥(r, 6) of the

- second harmonic m=2

~ p
~ ~ v QW TP
B W}:—;— gg , ’I/,}"ol'Z'Zg=—?"z“ ’ 4"—-.21'//{'2/5//7/775- (52)
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for A=0.1, ¥,=0. Inasmuch as the steady-state velocities (45) are given so that
their current function ¥=0, at the initial point in time the transfer cross
sections of the helical surfaces of the flow are defined by the equation

¥(r, 0)=const, and they are depicted in Figure l4a. For the investigated dis-
turbance mode m=2 the flow surfaces for t=0 are 4 helical tubes. The kinetic
energy of the instability is defined by the expression

W, = 4 [vfaV+ 2/ (Vo2 3 ) oV 53

Figure 12 shows the variation in time of the radial energy W,. The graph of

W, has the characteristic form of a curve with a maximum which coincides with
respect to order of magnitude withk the maximum possible consumption of longitud-
inal energy (51).

Figure 13 shows the evolution of helical surfaces I(r, 8)=const which for t=0
were cylinders. It is obvious that the instability circle encompasses the
entire cross section 0<r<l, and narrow layers are formed with large gradients [2].

Figure 14 shows the cross sections of the flow surfaces ¥(r,8)=const constructed
by the approximate formula

e o/ Z/J/x 2 Uz —Vyp)olz, (54)

obtained neglecting the variation of p. As is obvious from Figure 1l4b, as a
result of evolution of the unstable disturbed flow basically two helical current
tubes develop with opposite direction of rotation of the gas around the axes of
these tubes.

Figure 15 shows the cross section of the surfaces of constant density
o(r,0)=const for different points in time t.

Thus, the possibility of nonlinear development of the helical instability caused
by a decrease in the longitudinal velocity with respect to radius and leading to
the formation of characteristic large-scale structures I=const with narrow
layers is demonstrated. During the process of the instability, helical current
tubes are formed in which the gas rotates around the axes of these tubes.

As follows from the choice of the equilibrium parameters, the dimensionless unit
of velocity is co/vfy—, and length is the radius of the cylinder a. Consequently,
the dimensionless unit of time corresponds to the interval At0=/;a/co.

Conclusion

In the above—investigated problems a study was made of the development of
instability in the one-dimensional initial configurations. However, it is
natural that in a more realistic model the formation of the tornado must be
considered as the result of evolution of a two-dimensional steady-state configura-
tion.
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0(v, 8)= const

N

Figure 15
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Actually, for example, the radial pressure gradient occurring as a result of
local superheating leads if necessary to a current in the gas having radial
velocity components. The two-dimensional flow that is formed, in turn, becomes
an additional strong factor promoting concentration of the rotational moment in
the vicinity of the axis of rotation.

In conclusion, the authors express their sincere appreciation to N. N. Chentsov
for his interest in this paper and useful discussions.
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HYDRCDYNAMIC DESCRIPTION OF THE SELF-FOCUSING OF LIGHT BEAMS IN A CUBIC MEDIUM

[L. M. Degtyarev, V. V. Krylov, pp 106-161]

Contents
Introduction
§1. Variation Formulation of the Problem, Integrals of Motion. Hydrodynamic
Analogy.

§2. Coordinates Connected with Rays (Optical Analog of the Lagrange Mass
Coordinates).

§3. Numerical Simulation of Self-Focusing. Method of Moving Finite-Difference Nets.

§4. Asymptotic Solution of the Self-Focusing Problem in the Vicinity of the
Focal Point.

§5. Results of Numerical Integrationm.

§6. Equation of Rays and Simplification of It.

§7. General Solution of the Simplified Equation. Aberrations with Self-Focusing
of Gaussian Beams. Results of Numerical Integration.

- §8. Focal Length Formula.

Introduction

The self-focusing of light beams is one of the nonlinear optical effects, interest
in which was manifested at the beginning of the 1960's in connection with build-
ing lasers. The essence of this phenomenon consists in the following. The light
wave field changes the properties of the material, in particular, the index of
refraction. The optical ronuniformity creating the lens effect appears. As a
result, the path of the rays in such a nonlinear medium can change significantly
by comparison with the linear medium, which leads to the formations of regions

of localization of the light intensity -- the focal points [1]-[4]. TFor the

study of light beams in nonlinear media, the quasioptical approximation was fruit—
ful -- the equation of the Schroedinger type with nonlinear potentials for the
complex amplitude of the electric field of the wave [2], [3].

In reference [5] it was demonstrated that a uniforn beam is unstable with respect
to disturbances in tihe plane normal to the direction of propagation. In the
nonlinear stage of this instability the beam is broken down into filaments, in

- each of which self-focusing takes place. This instability is similar to the
Rayleigh-Taylor instability in a liquid. The basis for such an analogy can be
the hydrodynamic formulation of the nonstationary Schroedinger equation [6], [2].
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This paper is on the hydrodynamic formulation of the quasioptical approxima-—
tion and the study of the steady-state self-focusing of an axially cylindrical
beam of light based on it. This approach turns out to be natural and fruitful

in that, as a rule, the phenomenon with strong spatial deformations, which include
self-focusing, are conveniently studied in Lagrange variables whibh are most
simply introduced in hydrodynamics.

This paper is a survey of works by the authors [7]-[9].

In §1 the variation formulation of the steady-state quasioptical equations and
hydrodynamic interpretation of the problem are given. In §2 the axisymmetric
problem is formulated in hydrodynamic variables, the coordinates connected with
the rays are introduced -- the optical analog of Lagrange mass coordinates [7].
This formulation of the problem permits the well-developed difference schemes for
the equations of gas dynamics to be used for its numerical solution., In particu-
lar, in §3 the variation principle recently successfully used in hydrodynamics

- has been used to obtain difference systems in the problems of the propagation of
light in nonlinear media [10], {11]. The difference schemes obtained, by
amalogy with hydrodynamics can in this case be called completely conservative
[12]. This property of the difference schemes is theoretical in this case: as
the numerical experiments have demonstrated, violation of it leads to incorrect

- determination of such self-focusing characteristics as the focal length and nature
of the asymptotic behavior of the solution near the focal point. As a special
case of the general approach, in §3 difference schemes are obtained for the axi-
symmetric problem [7]. As a result of using the Lagrange coordinates, the Euler
net in the plane of normal propagation of the beam is moving and is
automatically adjusts to the solution., In §4 the Lagrange hydrodynamic formulation
is used to study the asymptotic behavior near the focal point of self-focusing
in a cubic medium. By simple separation of variables the class of self-similar
solutions was obtained [13]. It is proved that independently of the input data

- the solution near the focal point will become one of the self-similar solitions
of [9]. 1In §5, a discussion is presented of the results of the numerical solution.
Here it was found that only part of the beam with a power on the order of critical
is focused. Near the focal point the solution goes -to the self-similar regime.
The solution of the problem is exhausted by studying the peripheral rays (aberra-
tions). In §6, a simplified equation was obtained for the peripheral rays. The
study of its solution and comparison with the numerical results are the subjects
for 57 [9]. Good agreement of the approximate behavior of the peripheral rays
with the results of the numerical solution to the focal region offersthe possibil-
ity of obtaining a formula for the focal length for arbitrary monotonic intensity
distributions in the input cross section.

As became known to us, the hydrodynamic approach to the numerical solution of the
propagation of light in linear media is ulso developed in [14].

The authors express their appreciation to Academician A. A. Samarskiy for numer-

ous useful discussions and T. A. Gorbushin for participating in the various
stages of the work in the numerical calculations.
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§1. Variation Statement of the Problem. Integrals of Motion. Hydrodynamic
Analogy

Let us consider the problem of the steady-state propagation of a beam of light
limited in the transverse directiun in a nonlinear, nonabsorbing medium. We

shall begin with the stationary wave equation in the quasioptical approximation
of [15, 2-4]

1)
A _ 2 $20ap
Zlkﬁ—AlA'ik "“e )A (l.l)
Key: 1. n °

where A is the complex envelope of the electric field ("slowly varying amplitude"
of the wave so that the field oscillating with respect to space

EN E A eikl+ kC.

k is the wave number, enz(lAlz) is the nonlinear additive to the dielectric
constant €y of the linear medium

N Z:‘a.:"' E“NA(IA'?.,) -

1)
Key: 1. nf

A1 is the Laplace operator in the plane transverse to the beam. At the boundary
of the nonlinear medium z=0, a value of the amplitude is given

AR 0)=AB),  T=(xy) (1.2)
7 The other boundary condition is a decrease in amplitude in the transverse direc- B
tion
A(r;zhgg:: (1.3)

The physical meaning of this condition comnsists in limiting the beam with respect
to the transwverse coordinates.

- Let us consider the variation formulation of the problem. This formulation
includes the selection of the dynamic variables (field functions), selection of
the spatial coordinates, Lagrange function density recording, the condition of
steady-state effect and, finaliy, the Lagrange-Euler equation [1€], 1In the given
case the field is described by two  dynamic variables F1, F, (for
example, the amplitude A [illegible word] the function A* complex conjugate for
it) and three coordinates ej, €5, €3 for example, €1X%, €95y, €43=2z. The density
of the Lagrange function L depends on the field variables, and the
first derivatives and, generally speaking, the coordinates

AP R R I T
bttt g g 5y 5 85,098, 85 B T

The effect of J is the integral of L with respect to the region f the given
problem
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7= ) Ldg,dg,de,

[T ]

The variation formulation of the problem consists in requiring equality of the
variation of the effect to zero on variation of the dynamic variables

=0

This condition (with the variation of the variables vanishing at the boundary
of the region) leads to the Lagrange-Euler equations

553 3L _3L e

o«=d
Setting F:sA » p’.QA.; E‘=X)I$L= yl gixz'
and considering the prgklem in the region
O i X€(—09,00), yg(~ao,e0) 2 (0,90)

we find that the equation (1.1) and the one complex conjugate to it are Lagrange-
Euler equations for the following L

Lod (ka3 3) - 13 K (i) >
where $., (IA1?) = ‘.‘WE.“(I)JI.

It is possible to perform the time-space analogy, interpreting the longitudinal
coordinate as time [17]. With this interpretation the Lagrange function naturally
is the integral in the transverse density from the density

£k fLdg

(the factor 1/27 is introduced for convenience of notation of subsequent formulas).
Then let us consider the spatial analog of the Hamiltonian

#=d [ nas

where H is determined from the equality

3Rk 3L .3k 3L
. Mo 536D > 308

and for Fy=A, Fyt+A*

ok [17Ar - K g (A Jde, 1.6)
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Let us note that the Lagrange function density (1.5) does not explicitly depend

on the coordinate z. By the corresponding theorem of variation calculus it

follows directly from this that the value of the integral "W (hereafter called

the Hamiltonian) will be defined only by the boundary conditions [16]. In partic-

ular, for the condition (1.3) the integral ¢ does not depend on z (it is invar-
- iant); its value is determined only by the condition (1.2).

Let us represent the complex amplitude A(_fl, z) in the form
A = A, exp(-iks) (1.7

where AO is the real amplitude, s is the eikonal (the spatial phase). Selecting
Ap and s as the dynamic variables, we convert the Lagrangian (1.5)

__IL{ A:g;*A (V.S)" (VA)Z 9m(A)]

The Lagrange-Euler equations in this case (1.4) assume the form
. %%43}(A:'"i5)=0 (1.8)
+(VS)2 Gm(A)Jr_k_ _%2 (1.9)

and form the system equivalent to the initial equation (1.1).

From the amplitude equation (1.8) and the condition (1.3) we have conservation
with respect to z of the integral

M= SA JG'_~S‘M ds, (1.10)

which coincides with accuracy to the constant dimensional factor with the total
beam power P=cnM /4 (c is the speed of light, n is the index of refraction).
The beam power is the value which essentially defines the nature of its propaga-
tion. Strictly speaking, the boundary conditions (1.2) only with a finite value
of the integral M have meaning (finite-power beam). Hereafter, discussing the
1limited beams, in addition to the conditions (1.2), (1.3) we set

i A d, < co (1.11)

The concept of ray tubes is closely connected with the power integral. The
ray trajectory is the line

F(2) = {x@), yn)

defined by the equation
—» rd >
=Vs, =T,

o
NS
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Applying the operator vl to the common parts of (1.9), we obtain the ray equation

2% — 2
-t (-2
° -]

where d 3

&=yt (Rs)©

v“ 7, 22 “‘J) t (1’13)
[paragraph illegible]

A Ys=1 (1.14)

Then (1.8) corresponds to the continuity equation, (1.9) (or (1.12)) corresponds
to the equation of motion. The power integral and the Hamiltonian are interpreted,
respectively, as the total mass and the total energy of the liquid

_k ([ Letad, Loy 8D 145,
M=2‘1‘q§9d6"» M“fﬁi[zw a\eg(a*?) T }‘J L (1.15)

It is possible to consider the ray tube as an element of constant mass consisting
of liquid particles (the current tube). Finally, the derivative with respect to
the ray direction is the analog of the total (Lagrange or substationary) deriva-
tive with respect to time.

The hydrodynamic analogy turns out to be useful primarily in procedural respects.
In particular, for numerical simulation it turns out to be possible to use the
{deas and methods of the well-dsveloped theory of the difference schemes of gas
dynamics [12].

§2. Coordinates Connected with the Rays (Optical Analog of the Lagrange Mass
Coordinates)

The hydrodynamic analog of the coordinates connected with the rays is the Lagrange
coordinates. 1In the general case these coordinates can be introduced in full
correspondence to the hydrodynamics of two—dimensional flow. In the given section
we shall consider the axisymmetric case in detail. Inasmuch as in the tramnsverse
direction there is only one coordinate, it turns out to be possible to introduce
the analog of the Lagrange mass coordinates [71.

Let us introduce the cylindrical coordinate system (r, z) (0z is the beam axis,
r is the distance from the axis) and hereafter let us use the dimensionless
variables (the system of units with scale of length 1/k)

r +~ kr, z + kz, s > ks. (2.1)

Then using the hydrodynamic notation

-3 ¢
) Y1 ) [T

" l\“ a.- ‘::).’) . ¢ /\" - r(A.\, ‘,/\,) (2.2)
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The equations for the amplitude and the eikonal will be written in the form

:f; P RS =0 (2.3) ]
‘ Y .0
_ where :
ur=%[f-‘?’*%ro%§?"%éll (2.5)
The problem for Ay, s is considered in the region
0<r<eo , >0
with the boundary condition )
9(r,0) =%(r); w(ro)=1,(r) (2.6)
(the input data are the conditions at the boundary of the nonlinear medium) 7
%%(o,'zho, v(.2) =0 @.7n

(the conditions on the beam axis following from the requirements of symmetry and
smoothness of the distributioms),

plrz) 7720, Virz) ;== s-;;\) 1[(2‘,2) (2.8)

(the conditions of "transition to the shadow region') and also the. condition
= of finite power of the beam

S?.Pdr<oa (2.9)

o]
We shall find the solution of the problem (2.3)-(2.9) in the form -

9=9p(mz), $=s(mz), r=r(m?2) (2.10)
where the transformation of the coordinates
(rz) — (m2)
is given by the equalities
z=%'

" \2.11)
m:!grdr

(2.12)
The value of m is the analog of the Lagrange mass coordinate and has the meaning
of the power integral in the ray tube of radius r, and accordingly (m, z) can be
called the coordinates of constant power ("m-coordinates") [7].
- 89 }
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The formulas for transformation of the derivatives have the form:

%:gr,m (2.13)
2 = d
=g (2.14)

Substituting r in (2.13) and (2.14), we arrive, respectively, at the equations

grat - (2.15)
- 2.16
-u*_g}% (2.16)

from which by the beam trajectories r(m,z) the intensity p and the slope of the
rays v are determined. The continuity equation (2.3) is converted to the form

Iéi(%):alm(rw (2.17)

and it is a consequence of (2.15). Converting the derivatives entering into w
(2.5), in the coordinates (m,z) we obtain the equation for the phase

g—i— - %—’.z ur(m,z)

and, as a consequence, the equation of the ray trajectories

dtr (2.18)

a7 =I5
Let us proceed to the formulation of the boundary conditions. First of all, let

us note that by transformation of (2.12) the halfaxis O<r<e is mapped one to one
on the finite interval O<m<M, where

M= {grdr (2.19)

is the integral of total power of the beam, finite with respect to the condition
(2.9). Thus, in the new coordinates the region of the problem is given in the
form

: 0
0<m<M  (Mgoo) 2> (2.20)

The conditions (2.7)-(2.8) are now formed on the boundaries of the interval (0, M)
(in the first of the conditions (2.7), instead of the equality sign it

is n~cessary to substitute the sign of the limiting transition). Finally, the
transformation of the input data (2.6) is realized by means of the relations

r
n{r)= Sg{,(r)rdr 2 rar(m)=> g, (r(m) = Q,(m),
¥, (v (m)) = U, (m)
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- In conclusion, let us write the statement of the problem in the coordinates
(m, z). Here the ray equation will be written in another form closer to the
equation in hydrodynamics. It is most simply obtained using the variation prin-
ciple.

Using the introduction of the notation (2.2), let us write the integral of effect
in the coordinates (r,z)

7z -

3=_;(‘ V1938 gyt L (% %._) % @Sg'JP z,

v

3o 2%

where .yl '-(?US‘

Making the transition to the coordinates (m,z) we obtain

e (Y- e (5% g1 g:) o

Equating the variation J to zero

R ST

Calculating the variation of the expression under the integral sign and consider-
ing that on the basis of

g e gt L (rdr)

Bm

9J is integrable by parts; assuming that at the boundary of the region of varia-
tion the functions s, r and p vanish, we obtain

F (-t (P A2 G -
+2.§-}__?L?"(g)}s'rulmcl'l. =0

Equating the expression under the integral sign in braces to zero, we obtain a
new form of the equation of the ray trajectories.

The problem is now formulated as follows: Let us find the functions r{m,z),
v(m,z) and p(m,z) in the region O<m<M (M<w»), z>0
satisfying the system of equations (2.15), (2.16), (2.21)-(2.23):

J_+r31+{r(%,%)n=0 (2.21)
L=-§9* (Rt 3+ hp) o
_ 3 @=2243.60), 8.@=(cGdp

(2.23)
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and the boundary conditions

9(m,0) = p,(m), W(m,0) = Uy (m) (2.24)
: ren -0, §akz,0(L); ver=0
(2.25)

9 (M,z) =0;

1]

vima) o b Vi) (2.26)

In this formulation of the problem x(m,z) is the analog of the pressure for the
equations of hydrodynamics. The integrals of motion here are 1) the total beam
power integral M trivially maintained ("the length of the segment" in which the

problem is stated), 2) the Hamiltonian in the coordinates (m,z) written in the
form

M
} r;g-_-g (\}l‘:ﬂirl éﬁ)"_ % ?_-}(.?_’)dm = const (2.27)

§3. Numerical Simulation of Self-Focusing. Conservativeness. Method of Moving
Finite-Difference Nets

When developing the method of numerical solution of the problems of mathematical
physics, some general principles of the construction of difference systems must
be taken into account [18]. One of the basic requirements which must be imposed
on the difference scheme is the requirement of conservativeness, that is,
executionin a finite difference net for the system of the difference analogs of the
integrals of motion [8]-[10]. Conservativeness is the general requirement on the
theory of difference systems: the digital model of the medium should be able to
transmit the properties of the continuous medium as completely as possible [12].
With respect to the above-stated problem we shall say that the system is conserva-
tive if the approximation of the finite-difference function of the power integral
and the Hamiltonian maintained on transition to the next step with respect to z
are indicated in advance. The nonconservativeness of the system indicates the
presence of fictitious sources and discharges not having physical meaning, and it

_ can significantly distort the representations of the solution. Thus, failure to
maintain the total power integral on the finite-difference net indicator fictitious
absorption (amplification) not having any bearing on the initial problem. The
maintenance of the difference analog of the Hamiltonian for the dynamics of the
process indicates the same thing as conservation of the energy integral in the
problems of hydrodynamics. Nonconservation of this integral on the finite- dif-

. ference net as numerical experiments have demonstrated, leads to distortion of
such important characteristics as the focal length and the growth rate of the
intensity near the focal point. However, in addition to the general requirements
when constructing the difference schemes it is necessary to consider the specific
nature of the solved problems. Self-focusing is the essentially nonlinear process
which in a number of cases leads to strong spatial nonuniformity of the phase-
amplitude distribution of the beam. It is natural to require that the characteris—
tic spatial scale of the net (its step size) will remain much less
than the characteristic scale of the nonurniformity. Here it is natural to use
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the above-formulated hydrodynamic analogy. For numerical solution of the prob-
lems of hydrodynamics an effective method of studying the singularities and dis-
con inuities is use of the Lagrange coordinates. For a number of problems of
the propagation of light beams, including self-focusing, their optical analog --
the coordinates connected with the rays -- turns out to be the most natural.
Here the Lagrange net is equivalent to the "moving" finite-difference
net of the spatial (Euler) coordinates automatically rearranged in accordance
with the development of the process. Begimning with what has been stated above
and using the coordinates related to the rays, let us construct the difference
system for the equation of ray trajectories which has the difference analog of
the Hamiltonian. For this purpose we then arrive at the following:

1. Using the hydrodynamic analog, let us substitute the problem of the dynamics
of the continuous medium.

2. Applying the variation method of the construction of difference schemes, let
us proceed from the problem of the dynamics of a continuous medium to the problem
of the dynamics of N particles [10].

3. Applying the difference analog of the Hamiltonian equations, we obtain the
conservative difference scheme of the initial problem.

Beginning with?(1.5) and using the notation (1.14) and (2.1) we write the
Lagrange function. We have

1,: T-u (3.1)
R A B ST R R S o
: E '

Let the coordinates &,n be introduced into the transverse plane. We then shall
discuss the dynamics of the continuous medium with the potential energy U and
the kinetic energy G , Its total energy'¥. =G+ q and total mass M are conserved

L.

1n the plane I let us introduce the difference net m(n)(gi-'](t)’ n; 5 (£)) (n is

the layer number with respect to t), breaking down the plane into tetragonal
cells with apexes at the nodes of the difference net. Then we shall number
these cells with the same indexes i, j. Let us introduce the finite-difference
density function pj; pertaining to the cell with the number (i, j). Let 4

be the area of the cell; then for its mass we have

msj = 945

Let us require that my4 not depend on t and be determined only by the initial
(for z=t=0) density pb_ and the initial "volume" o0 . Let us note that the
"volume" o;;(t) is a function of the coordinates of the cell apexes. Let us
approximate” the kinetic and the potential energy by the sums
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g;:%ﬁ?f Elym, W il?tz,: [%(%3’)2 3 g‘?f?')l,"“n

here the brackets [ 1j5 can denote the difference in the approximation of the
corresponding functions reduced to the corresponding cells.

- Then using a dot to denote differentiation with respect to time, we have
[display missing in source]

The approximation of [’52/2]1, thus includes the values of 'E, T.I, Ey n defined
at the apexes surrounding the given cell, and the kinetic emergy § is
approximated by the function

?L(éij.qq, ?.,,'L,) (L<ig N, 14y N,)

On the other hand, as is easy to see, the approximation of the potential emergy
is expressed in terms of the finite-difference function of the demnsity

Pij and the coordinates of the apexes; however, P13=M5 4 /ci-, where 0 j is
expressed in terms of the coordinates; thus, uh=uh'}€ij,ni"i(1$i<N1, 15jsNg).
The masses of the cells contained in the approximations 'j‘L and U, , play the
role of the parameters.

Thus, we arrive at the problem of the system dynanics N of part@cles.with
generalized coordinates Fvij’ nij’ the generalization velocities Eij’ N

(1signy, 1s3sNy; NiNy=N) and the Lagrange function

" . H
£ Go 80 ) = S (3.3)
The requirement of steady-state effect b § ‘Jkdt=0 leads to the Lagrange
equations ]
d & _25 d 2 _3%
d6 3%, " 3g 7 de S TS (3.4)
U< N, 1434\{1)

which is the differential-difference analog of the equation of motion of a contin-
uwous medium. Here the value of

«m.‘ =1—2 "\;")

2%
(corresponding to total mass) is the obvious integral of motionm.

Let us introduce the Hamliltonian corresponding to the Lagrange function (3.3)

®, = gi.eﬁp,‘ +%‘.iﬁp‘, ;f,k (3.5)
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t - \ '
where L) =3 /-"g“,’ v B= aik/a'k‘, are the generalized pulses. The
Hamiltonian (3.5) does not explicitly depend on time, it is the integral of
motion and it is identified with the total energy of the system,

The system (3.4) of second-order Lagrange equations is equivalent to the system
of firgt-order Hamiltonian equations. Let us formulate the difference analog of

thie Hamiltonian equations for which the analog of the conservation of energy is
satisfied. Let

=R AP (watn) (3.6)

be the Hamiltonian of the mechanical system of N particles with generalized

coordinates q, and generalized pulses p,, where ‘Jf does not depend explicitly on
time. Writing the differential of this function

=y % AR (3.7)
4% -§ b_pldlp"‘+z.£ Wmd%‘
on the basis of the Hamiltonian equations

N) (3.8)

we find that d'#=-=q . Conversely, beginning with d#0 0 , it is easy to write
the Hamiltonian equations (3.8).

Now let the difference net with respect to time be introduced. Let us consider
two arbitrary successive time layers -- lower and upper separated by the step 7.
The symbol """ will denote all the variables reduced to the upper layer. Let us
write the Hamiltonian on the upper and lower layer

=0, R ()

and let us rewrite the difference of these expressions in the form analogous to
(3.7)

-3 - Z‘.(%)‘(f’rﬂ) *Z(%’}(%) .-%.) (3.9)

Herg(é}g} (ng) are the coefficients, respectively, for Ap=p -p_. and
o) AQ /x oo

Aq=qa—qa; they approximate the partial derivatives of the Hamiltonian (3.7). Let
us write the difference analog of the Hamiltonian equations (3.8)

b (), (30,

X “\ag (S ap (3.10)
These equations approximate the equations of the differential problem. The
expression A
W=
95
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is a corollary of (3.10) on the basis of (3.9).

The method of obtaining the difference schemes investigated above is applicable
for the problems of stationary propagation of light beams in arbitrary coordinates
and transverse to the cross section beam. Then in §54-8, we discuss the results

pertaining only to the self-focusing of the axisymmetric beams in the cubic

medium, Accordingly, let us present the scheme obtained for the initial axi-
symmetric problem (2.21)-(2.27). Let us introduce two finite-differences nets:with

"integral" and "semi-integral" nodes with respect to mass
' )
G = WX Wy, R = O ¥Wh -

here

W= 1“40:0. M =Mirm i=0,., N, m=5 Mu»fM}
Q.= {M“,=M|+0.5m( ) ""or")“]

0, = itf 0) *u\:i'«*th ) “'_'0'4‘""\

= The difference scheme for rg, vg defined in @ and pin defined in Q' has the
form

9\ !;0,5_ (r'i« + ri)][)u,i =l , 1= 0,“'! “-1
fghi = <>, el N

628 4 )L, + ) Clga ) =0
i=4,.,N

_ Lo=- koL D Ge 0+
| ¥ =- *§l?f {«"t)(?il»n.i + X']
i=4 _ ¥
) (R B,
-2 B/
- i=o0,. N-{

§
)= [ fe]

o

with the initial data

ig)f = it0) {u‘i’:'ug(o)
i=0,,N1, L i=1,.N

96
FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300100002-5

(3.11)
(3.12)
(3.13)
(3.14)

(3.15)

(3.16)

[}



APPROVED FOR RELEASE: 2007/02/08: CIA-RDP382-00850R000300100002-5

'E ONL.

and the boundary condition
=0, X,=0 (3.17)

Here the index-free notation is used:

- §~.§""| (§>=05(5+%)
&m., = (s”iu- S‘) /m" ) 's'r‘i.'\: “’i"i".—-)/mi , ﬁ—‘i = 05 (me :"3)

With randomly different analog of the Hamiltonian equations (3.12), (3.13) the
integrals T and | were approximated by the sums

)
T=%aw =03
N
U= T {os [otaY + vl (9w V1 - L 1 % 3*(?‘)}} i

As follows from what has been stated, the law of conservation of the value of .
is satisfied on the difference net

u\,= TL""U-\‘
which approximates the Hamiltonian ‘M, of the initial differential problem.

Let us note that the difference scheme gives the trajectory of the last beam ry(z)
without the assumption of any previously given information on it. Thus, here

the problem of the tramsition to the shadow region for numerical solution of the
problems of optics with diffraction is eliminated.

§4. Asymptotic Behavior of the Solution of the Problem of Self-Focusing in the
Vicinity of the Focal Point

When investigating the self-focusing and the nonlinear diffractin the first approx-
imation is the optical system of a cubic medium [2], [3]

£ (1A1) = E* (4.1)

In the first papers on the self-focusing theory [15, 20-22] various authors
demonstrated that the behavior of the three-dimensional beam is determined by the
nonlinearity and diffraction relation quantitatively characterized by the ratio
of the total beam power P to some critical power Py [2], [20], [23]. For classi-
fication by this parameter the following cases were isolated:

A, PsP, -- diffraction predominates; the beam blurs, but this occurs more slowly
than in the linear medium;

B. PP, -- the mutual "extinguishing" of the diffraction and nonlinearity and
the dimensions and shape of the beam do not vary or vary slowly;
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C. PzPy -- self-focusing occurs —- deflection of the beams toward the axis
caused by nonlinear refraction which in the quasicptical approximation by
diffraction is not complicated.

The weakly nonlinear case of A is of interest from the point of view of the
quantitative corrections to the linear theory, but it does not lead to any new
physical effects.

Case B is in the framework of the more general problem of compensation of
diffraction divergence by nonlinear effects, and then it is not considered.

Let us consider the "strongly nonlinear" case C. For tne formulated prerequisites
(quasioptical approximation) + (cubic nonlinearity)+(P2Py) (4.2)

The self-focusing leads to the formation of a focal point on the axis with
infinite intensity [15], [21], [23]. We shall take this fact as the initial fact
for further discussion.

Within the framework of the quasioptical approximation let us substitute the
problem of investigation of the structure of the focal region in the cubic medium
(beam properties in the vicinity of the focal point). Here we shall not discuss
the limits of applicability of the physical model (4.2), and we shall state the
problem as the mathematical problem. Let us note that in many problems of optics
the vicinity of the focal point is of significant interest, and here the quasi-
optical system of the cubic medium gives good zero approximation for finer inves-
tigation (compare the ratio of the geometric optics to wave optics [241).

For solution of the problem of the asymptotic behavior in the vicinity of the
focal point, let us u:.e the transformation of the equations to the beam
coordinates (m, z) (§2). Below these coordinates we obtain a family of special
solutions of the initial equations important for the future. Let us first more
precisely define the concept of critical power.

Let us introduce the coordinates (m,z), writing the initial problem (1.1)-(1.3)
in the form (2.15), (2.16), (2.21)-(2.26). 1In these equations r and z are
dimensionless (k=1). TFor the investigated case of cubic nonlinearity let us also
introduce the dimensionless amplitude

ra £a 4.3
A—\ea R 29) “?
From (2.23) we have

=9, $.(p)=10o" ¥%@)=1 (4.4)

The power integral

oo

M= ggrar (4.5)

o
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in the adopted notation is a dimensiomnless vuriable, and it is related to the
dimensionless power P by the expression

c (g, )™

- 4.6
P W M (4.6)

Hereafter the integral M will be simply called the power for brevity, considering
the corresponding dimensionless factor in (4.6).

Let us proceed to the definition of the critical power. For the amplitude dis-
tribution of the given form the critical power will be the power defined from the

condition of equality of the integral "} to zero (1.6) or (2.27).

®=0

4.7)

The power defined in this way is minimal for the so-called waveguide profile
("first waveguide mode" [20], [23], [25]) —- the solution in the cubic medium
having invariant intensicy distribution with respect to z (see the case B). In
the adopted dimensionless variables for this profile

M >3 (4.8)
The critical power of the collimated gaussian beam A“\(I")=Ea exp (-r¥/2a%)
is close to My [23]

M, =210 M, (4.9)

In general, the definition of the critical power from the expression (4.7) for
unimodal beams with smooth amplitude distribution gives the results distinguished
from each other only by a factor on the order of one. Actually, let us write
the condition (4.7) (fer determinacy we set v=0: the beams with flat phasa front)

N."l '
‘38=§)i%r‘

A\ -
(ﬁ) ‘{'?]J""O (4.10)
For unimodal beams with smooth profile we have
2 2 2 \ Y (4.11)
2 (- 1 = L 2
‘"“% ) ?ln:‘%‘!—'zgo 1 M\( ZE‘oa
where E(Z) is the intensity on the axis, a is the beam radius. Then
29 .. 900 - 9(Mi) _ E2
3%~ TS
consequently, " "
2.9 ol
R LB (e - | X
[ M. r Jm "k d :_‘-__ E" 1y
o L} (S,S) m 8(?4’: a M‘ -
Al 2
;{56 M = % Eua —M! 2 .
“(2 ‘M) %E.(‘ﬁf Mi) = LEX-M)
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Therefore from (4.10) and (4.11) we have
M =2,

Hereafter, speaking of the power '"on the order of critical,”" we consider
expression (4.9). Let us show that the structure of the focal region in the
cubic medium is defined by the partial soiution of the parabolic equation from
a family. It is natural that in the coordinates (m,z) these solutions are
obtained by simple separation of variables. Substituting the function r(m,z) in
the form

F(mz) = a(2)R(m) (4.12)

in the equations (2.15), (2.16) and also using the beam equation in the form
(2.18), we obtain:

9= %t % _ ' (4.13)
= aR (4.16)
-1
V= uWm) : (4.15)
a'w =4 4 !
R 0’“’ Rw (4.16)
where W (m) = &[u;'-" 'U.J{-;IL,'R" %l‘"_‘]
1
LR = oo (4.17)
Separating the variables in (4.16), we obtain
ata’=-% (4.18)
-9, = w ! (4.19)

Dividing both sides of equation (4.19) by u2, using (4.17) and integrating with
respect to m, we have

wheu R = R, *

where v2 is the integration constant., Finally, taking R as the independent
variable, we obtain the equation for the function u(R)

%%R%% +("1R"—Z\)l§ M)W =0 (4.20)

This equation defines the amplitude structure of the solution

, A,(r,z)=é.u(%) (4.21)
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Then, from (4.12), (4.14), we have

_a
Ve T (4.22)

and, consequently, comparing the *, (2.4), (2.5) 1t is possible to define the
phase in the form

Z
LI, 3
sra =20, { %—MZ + const (4.23)

Thus, the class of partial solutions represented in the coordinates (m, z) by
geparation of variables is determined from (4.21), (4.23) where u(R) and a(z)
satisfy the equations (4.20) and (4.18). By analogy with hydrodynamics these

- solutions will be called self-similar [13]; in essence, these solutions describe
the spherical waves with variable radius of curvature [2], [21].

For self-focusing in a cubic medium when z=z4 let the focal point be formed on

the axis. We shall assume that generally speaking, not the entire beam is

focused on the point, but, gnly some part of it, containing the power mik. In the
coordinates (m,z) the prghz§ai of focusing part of the beam is written in the form

rmz) 5730 (4.24)

for all m from the interval O<m<m, (m<M). Let us demonstrate that the solution
of the initial problem for z-+z, asymptotically approaches one of the self-similar

. solutions (4,21), ( 4.23). Let us use the equation for intensity and beam tra-
jectories
_ {
9—w (4.25)
L
dr -gr3¥ (4.26)
' i 3 38 L L[ 2\
U= 3% + = P + Y=
where Z[? £?a'“ om I( dm ] (4.27)
The solution rz(m,z) will be found in the form of the series with respect to
powers of r=zy-z
2, _eoy
rim, 1) = ¢ V(R¥(m) + O(c)) (4.28)

where, generally speaking, a=o(m), that is, for each fixed m from the interval
_ (0,m) the expansion of the function r<(m,z) is carried out with respect to
integral or nonintegral powers of i.

From the equation (4.25) we obtain:

?("\.'L)= q"“‘) { ' @((- ) (£.29)

R+ o ¥ [ Y=
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Substituting r? and p from (4.28), (4.29) in the righthand side of equation (4.26),
we obtain

grag-o(ctt) (4. 30)
On t'.e other hand, it is easy to see that
Y
%_‘:l=©(c-§4§) (4.31)

and, consequently, if a#0 for O<m<m,, then the equation (4.26) cannot be satisfied
for sufficiently small . Thus, for the axial part of the beam containing the
power mg (O<m<m.) representation of the function rz(m,z) in the form of the

series with respect t» powers of ¢ has the form

rimz) = §R2(m) + O(c?) (4.32)

Substituting rz(m,z) from (4.32) in equations (4.25), (4.26) and isolating the
terms of the same order of smallness, we find that the first term of the expansion
of (4.32) ¥2(m,z)=zR2 is the solution. At the same time ¥2 is the function with
separated variables; therefore it is one of the self-similar solutions, where

in this case

0(7.)=\r77";‘, R(m\=¢fr £ ; \h=—a“a’=% (4.33)
.-

Equation (4,20) for the amplitude distribution has the form

Ldpdu /1,2 (4.34)
RaRde *(s¥-20, 2 wW)u=0
and the phase is defined by the expression
1
s"i& 1:_1 - Ntn(z,-7) , (4.35)

Thus, we obtain the following basic result: independently of the data at the input
to the nonlinear medium (for z=0) the part of the beam focused on the point assumes
the shape of a convergiag spherical wave

{ r P
= u —)e - an-zj 4.36
TT Ve | Wa,) S Uiy e (4.36)
the beams in the vicinity of the focal point have the shape of parabolas
Pi(m2) ———= (z,-Z)R*(m) (4.37)
'l—'z,

For the intensity pEAé and the slope of the rays vzdr/dz, correspondingly, we
have
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{ 2 r
u e — L
Z4 -7 (\’1,-1), v 22,z (4.38)
In (4.36) the function is a solution of the equation (4.34) in the segment
0<R<Rk, where
Re= lim —Llmez)
¢~oVNz, -2 (4.39)

R,
éu"(ma& (4.40)

Let us note that the result for the intensity (4.38) coincides with the result of
reference [32] to the logarithmic factor ~£n]z¢—z|.

§5. Results of the Numerical Integration

Let us present the results of numerical integration of the problem. The applica-
tion of the procedure described in §3 made it possible numerically to simulate
the formation of the focal region and perform the calculation to high intensities
where the asymptotic behavior is manifested quite clearly.

Let us present the results of the calculations for the input intensity data
represented in Figure 1 (i-iii). The phase front for z=0 is planar for all three
beams. Beam (i) is gaussian; the profile (ii) simulates the part of the beam

cut off by the iris; the beam (iii) represents the profile, differing from
gaussian, the power of which greatly exceeds critical. In Figure 2 (i)-(iii)

the same intensity distributions are given, but as a function of the coordinate m.

- The numerical calculations permitted, first of all, confirmation of the assumption
_ (4.24), according to which during self-focusing of the beam of "supercritical"
power, part of the beam is focused on the point.

Figure 3 shows the lines (1/2)r%(m,z) for z+z, for the beam (i) (exactly the same
picture is valid for [words missing in_the original]. This graph illustrates the
expression (4.37) according to which r“ approaches zero by a linear law. The
numerical solution approaches the self-similar solution. The position of the
focal point (the value of z¢) is determined by extrapolation of these lines to
the z-axis.

Then, as the numerical calculations demonstrated, the function v(r) of the tangent
of the slope angle of the beams for small f has a maximum (see Figure 4)
corresponding to the boundary Ry (4.39), (4.40) in the sense that

v (V...) =, v =rim,,2) (5.1)

Inside the interval (0,m) in accordance with (4.38), the function v(r) is
linear with respect to r.

The value of m determined by the ray of maximum slope has the same value for
all three beams
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- m =20 =M (5.2)

that is, part of the beam with a power on the order of critical is focused on the
point.

The intensity distributions p(m,z) with the factor ¢
Yimz) = (74-2)9(m2)

for the beams (i)-(iii) for small ¢ are shown in Figure 5. Comparison with

- Figure 2 clearly illustrates the independence of the structure of these distribu-
tions with respect to the input data (let us note that these graphs always confirm
the expression (5.2)). Now let us show that ¢(m,z) for small ¢ satisfies
equation (4.34) with good accuracy. Let us replace the equation equivalent to it

L(y)= %1[9%..4« %;(w..)‘h‘z] + 9.+ 9 =2, (¢=u?)

bg the difference scheme and let us substitute the numerical values of ¢ and
R2=r2/ 1init. The results are presented in Table 1. Within the limits of
accuracy of the system the lefthand gide of the equation remains constant with
respect tom to the boundary m =2 of the interval (O,mk). An estimate is ob-
tained simultaneously for vy

v, =10 (5.3)

From the results of the numerical calculatiogs (in particular, presented in
Figure 5), the estimate is obtained for u%=u~(0)

'u:-: 90 (5.4)

Figure 6 shows the function
: R¢)=¢9( s, ¢) — Ut
¥ (&) =C9(F¢) yy, WO

which gives the intensity distribution with respect to the radius and for small
T asymptotically approaches wZ2(R) (the graph is presented for the gaussian beam
(1); the results from all three beams (1)-(iii) for z=0 coincide graphically).

The results of all of the presented numerical calculations indicate that the

- asymptotic behavior of (4.37), (4.38) is valid in the finite segment 0<R<Ry.
The processing of the numerical results gives (see (4.39))

Q=18 (5.5)

Figures 5 and 6 illustrate expresion (see (4.40)):

B (5.6)
Su‘(a)uu =m=20
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Let us note, finally, the following conclusion from the result of the numerical
integration: the transition from the vicinity of the focal point O<m<m, to the

- regular variations of the solution for m>my is not discontinuous, there is a
transition region between the singular and regular parts.

Thus, the numerical integration of the problem permits both illustration of
expressions (5.25)-(5.27) and obtaining of important additional information about
the behavior of the solution for zrZ 4.

§6. Ray Equation and Its Simplification

In the quasioptical approximation let us consider the problem of axisymmetric
self-focusing ir a medium with cubic nonlinearity on the whole, not limiting
ourselves to the focusing part of the solution. Its basic complexity consists in
nonlinearity of the equation (1.1), its exact analytical solution at the present
time is unavailable. At the same time, combination of the analytical and numeri-
cal methods permits us to obtain quite complete information about the solution.

In §54-5 a study was made of the problem of the structure of the focal region.

It was demonstrated, in particular, that for self-focusing in a cubic medium the
beam of "supercritical" power, generally speaking, only part of the beam is
focused on the point (namely, including the power on the order of critical). The
numerical integration of the problem with different input data permits the
general conclusion of aberration nature of self-focusing to be drawn: the
peripheral rays are focused more slowly than the axial rays; the self-focusing

of the beam as a whole, generally speaking, does not occur. The aberrations are
taken here as the errors in the lens formed by the beam on passage through a non-
linear medium. The calculation of the aberrations means in essence investigation
of the behavior of the peripheral rays.

Attention was attracted to the aberrations by various authors as early as the
first theoretical and experimental papers on self-focusing [15], [20], [21]
and [26]. It was emphasized that the aberration self-focusing is the most typical
- of real beams [21]. It was noted that the aberrations must be considered, in
particular, when using a nonlinear medium as the lens [26, 27]. Thus, the .-alcu-
lation of the aberration pattern is an important part of the problem of steady-
- state self-focusing in a cubic medium. In this section a study is made of the
, behavior of the beam during self-focusing inside the focal region, in particular,
in the region of the peripheral rays. Thus, the statement of §4 and the given
section mutually complement each other, completely exhausting the problem of
self-focusing in a cubic medium, As was demonstrated in §§1, 3, the initial
problem for the parabclic equation (1.1)-(1.3) is equivalent to the problem of
determining the ray trajectories. In dimensionless variables

- (r,2) —~ (kr, k), A—\ oA 6.1)
- in Lagrange coordinates (m,z) the problem can be formulated (see §2) in the
form ¥ y
(6.2)
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' 4h-9r 3% (6.3)

where 239 A (pD Y}
ooht, wojlseioBr S ri) |
(6.4)
For z=0, the following conditions must be given
P(m,0) =P (m), 4 Om, 0=, (m); §Om,0) = 9a (i) (6.5)

where po(m), rg(m) are related by the equation (6.2).

In the righthand side of the equation of the rays (6.3) the term (1/2)px{3p/3m)
corresponds to the nonlinear refraction; the diffraction effects are taken into
account by the remaining terms in the quasioptical approximation. The relations
between them define the total "stremgth" acting on the given ray. However, this
expression can vary sharply . transition from the axis to the periphery of the
beam which is easy to be convinced of in the simplest example of the gaussian dis-
tribution of the intensity

go(f‘) = E:exp (_ L;;)

or, what amounts to the same thing

pi-£2(1-8) =
(M=(1/2)E%a2 is the total beam power). As is easy to see, in this case
) .
Wr_r E _ 1 6.7)
gr 3 = r £a [m-(M-1)]

and if M'=M-(1/2)>0, then dzr/dzz<0 for m<M' and dzr/dz2>0 for m>M'. If for

z=U the phase front is plane (vo(m)=0), then for m<M' the rays are focused
(deflected toward the axis, nonlinear refraction predominates); for m>M' they
aEe de;.’ocused (diffraction predominates); for m=M' the beam is in "equilibriua':
d4r/dz2=0.

Thus, the relation between diffraction and nonlinearity generally speaking has a
local nature which depends on the coordinate of the ray. Giving the ray by the
coordinate m, it is possible to talk about the dependence of the self-focusing
rate on this transverse coordinate. Tor description of this relation it is
necessary to have the solution to the problem (6.2)-(6.5).

The exact solution of problem (6.2)-(6.5) of calculating the ray trajectories for
arbitrarily given conditions ro(m) and vo(m) is no less difficult. than the solu-
tion of the initial problem (1.1)-(1.3) inasmuch as the system (6.2) (6.3) is

- equivalent to the fourth-order nonlinear equation for r(m,z). However, isolating
the defined cless of input distributions of intensity and phase, on the basis of
the qualitative picture of the phenomenon it turns out to be possible to simplify
the equations, reducing their order, and to obtain the problems solved analyt-
ically. Let us discuss these problems in more detail.

106
FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300100002-5



APPROVED FOR RELEASE: 2007/02/08: CIA-RDP382-00850R000300100002-5

FOR OFFICIAL USE ONLY

Let us consider self-focusing of the beam with arbitrary intensity distribution
monotonically decreasing from the axis and smooth phase front (the standard
example is a gaussian beam with plane phase front or focused or defocused by a
lens). If the beam power M exceeds the critical power My, then-for zome z=zg,

a focal point is formed on the avis. As was demonstrated in §5, the focal
region in this case includes part of the beam of power ~Mk, that is, in the

- coordinates (m,z) the focal region is O<m<My, z~z,. Here for z~zy the rays are
axial. Assuming that the total power M exceeds the critical by several times
(M/M.22), part of the beam O<m<Mg will also be called axial, For m>M; and

z~z4 the beams do not reach the focal point and are peripheral. Hereafter this

part of the beam will also be called peripheral (see Figure 7) on the entire
self-focusing length.

For the formulated assumption let us substitute the problem of calculating the
operations based on equations (6.2)-(6.4). Let us introduce the function of the
deflection of the rays f(m,z)

r(m,2) = (m) {(mx) (6.8)

The factor f is the compression coefficient (f<l) or the tencion coefficient (£>1)
of the transverse coordinate of the given ray.  Substituting f(m,z) from (6.8)
in (6.2)-(6.5), we obtain the following problem. The equations (6.2)-(6.4)
reduce (after exclusion of p from (6.2)) to one nonlinear, fourth-order equation

%%=p(§.%%“,...,%‘_‘%,,m) (6.9)

with the boundary conditions
§m0)= (6.10)
4E (m0) = ‘%ﬁ—::% (6.11)

In this form the problem is much simpler than the initial (6.2)-(6.5). However,
let us turn attention to the fact that the boundary condition for £(6.10) does
not depend on the specific form of the beam for z=0, and it has an especially
simple form. Let us consider the variation of the function f for z>0. Its
derivatives with respect to z obviously characterize the focusing or defocusing
rate of the given part of the beam., At the same time its transverse derivatives
(with respect to m) characterize the transverse nonuniformity of the self-focusing
process, that is, the dependence of f on m describes the aberrations themselves.

The special case of the aberration-free self-focusing corresponds to independence
of f with respect to m

{mz) = §£(2) (6.12)
In this special case the ray trajectories r{m,z) are represented by the function

with separated variables (are "similar"), and the solution of the initial problem
is self-similar (§5). Near the boundary of the nonlinear medium on the basis of
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- the condition (6.10) with monotonic phase distribution uniform with respect to

- radius, it 1s possible approximately to consider the self-focusing aberrationless.
The approximation by the condition (6.12) of the process on the whole leads to
aberration—-free approximation [23].

fhe above-substituted problem of aberrations, however, requires a more detailed
picture and consideration of the variation of the function across the beam. The
nonuniformities of £, small for z~0, are accumulated during the self-focusing
process, noticeably distorting the shape of both the amplitude profile and the
phase front.

The problem of calculating the beam trajectories can be simplified significantly
if we consider the nature of the process. Let us estimate the transverse
derivatives, entering into the righthand side of equation (6.9). We have

M & B§)mas
%% N (A:")....’ -, %;'-_\w (_%)T_ (6.13)

where

8§ =1 5mz) - §(moN=1§-41; (85D = e o)

- In (6.13) estimates are presented for the derivatives with respect to the cross
section of the entire beam as a whole. However, the beam experiences the greatest
distortion for formation of the focal region and the derivative of f with respect
to m are larger here than in (6.13). At the same time, on the periphery of the
beam the transverse variations are smoother; correspondingly, the derivatives of

f with respect to m are smaller here than from the estimates of (6.13).

Then we proceed as follows. In the region of peripheral rays we estimate the
derivatives 3f/dm, ..., 3%£ /o by relations analogous to (6.13), assigning them,
however, a defined order of smallness M

A £ )ax N (A %) max (6.14)
'g;{,:l’“f‘( tt) e -?T.f-.'“i““‘ﬁr

Then let us substitute these derivatives in the equations for f and let us drop
the terms of higher order of smallness. Thus, we obtain the truncated equation
describing the trajectories of the peripheral rays.

From equations (6.8) and (6.2) we have

- i _9
8= F= 7= =22
Pam gt drr 38 )

where

_ 2, Lopr 2§
=% +z%n S
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2
In the last equality we estimate the term fS’«'%l;a-é . For beams of monotonic

smoth profile (in particular, for the gaussian beams) the functions
(1/2)p0 (m)x2(m) has a unique maximum at a distance on the order of the radius
of the beam a from the axis, and it reaches the values of

2 {22 |
(%9.". "“'SIEOO. —EM
(Eg is the intensity on the axis). On the other hand, setting (Afz)max~f2, we
have 2 2
25 5
m "M
Thus , 1 2 2
-2 F DY 0.
: 9=t e gy P
?::_9:
and & (6.15)

- Now let us consider the derivative 3p/om

% %
%§%== %;‘s:ﬁ“%fziﬁi

Let us estimate 3g/9m. We have

e
2% 38 (1a 2 (Lo« Lot 35

Inasmuch as

x|,

/™
e

we obtain
) °
L+ ‘m (%‘.9‘&1) =2+ %I"." %%—l ~ 2—%(*:' Er

The initial quasicoptical approximation is valid if o exceeds the radius a by
no more than a few times (r0<<ka2). Consequently,

200 |
aE L~
°M

Thus,
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Comparing the terms in the expression for 3p/dm, we have (inasmuch as g=f2)

i 3?n~_ E:- o ___BS ;‘ Sl 2 > g
¥ B 'S"'v’ (L%" a"")n-x~ Eﬁ: “ 5 !‘ Eli ;
and for the derivative 3p/dm we obtain
P _ 1 3%
a = ? 5 (6.16)

As a result, the first term in the righthand side of the beam equation (6.3)
corresponding to nonlinear refraction assumes the form

A L6 3%
)

O o B

i op9s
w2 £ 3¥m

Analogously, it is possible to obtain the approximaf:ion for the diffraction
"force"

A [s3 3k +4( 2]

Tor this purpose it is necessary to estimate the derivatives 32p/'am2 and
a3p/am3 entering into it similarly to how this was done for the first derivative
9p/%m. As a result, we obtain

3P L 22 L0
Swe = B =45
and, consequently,
2 % U (6.17)
A T ’z% ST

where

- =1 1o 2 2 e A
Wo = Wlmo) = £[0.+4 0. 2 rr3 + (n 32)']
The approximate equation for f assumes the form

s i o AU (6.18)
e Il

The truncated beam equation will be obtained, returning from f to r(m,z)=rg(mf
(m,z) in (6.18).
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§7. General Solution of the Simplified Equation. Aberrations During Self-
Focusing of Gaussian Beams. Results of Numerical Integration

The simplification of the equation (6.3) of the ray trajectory performed in the
preceding section consisted in replacing the differential dependence on m
entering into the equation by the parametric function (6.18). Returning from f
to the ray trajectories and denoting them as before by r(m,z), let us write the
truncated equation of the ray trajectories

1 3
%““TG,(.") (7.1)

where
= \ U,
G(m)= -1, 3), %__1
(7.2)

The first approximatiom of (6.5) was written for the intensity p(m,z). We obtain
the next approximation, solving (7.1) and defining from equation (6.2)

i

rac (7.3)

Equation (7.1) is an ordinary differential equation (m plays the role of the
parameter). The initial conditions (for z=0) for it will be obtained from (6.5)

9(mz) =

r(m,0) = r,(m) (7.4)

ﬂ,—’;(mp) =1} (m) ' (7.5)

On the basis of (7.3), ry and pg are related by the expression
™
%&"(m): S dm (7.6)
° _Po(m)

therefore it is sufficient to give any of these functions.

Let us write the general solution to the problem (7.1)-(7.5). The general solu-
tion of the equation (7.1) has the form

rt= ozt 4 gz +Y
where

dx—}": -G

Considering the conditions (7.4)-(7.5), we obtain

G
d:ﬂ;z—ﬁ, }:’U;f;) x:!::‘
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Thus, the general solution to the problem (7.1)-(7.5) has the form

2 dUr,
rmz) =[(v; +Q, v S Yz 42y + poz]‘/l (7.7)

Thus, the ray trajectories are represented by a single-parametric family of
second-order curves; their type, location in the plane (r, z) and the distribution
with respect to the parameter m are defined by the boundary conditions of the
initial problem (7.4)-(7.5).

In accordance with the conclusions of the preceding section, the solution (7.7)
of the problem (7.1)-(7.5) describes the self-focusing aberrations of a beam of

- power m>M, for small M>M, with arbitrary smooth amplitude and phase distribution
on the boundary of the nonlinear medium.

As an example, let us consider the aberrations for self-focusing of the gaussian -
beam with plane phase front

2
A(ro)=E,exp (-53)
In the coordinates (m,z) we have

Rm=EX(1-m), M=lEZat>M,

2 (7.8)
, %r}(m)r_-%e,\(i_ﬁra) i
Y,(m)=0
The solution of (7.7) is written in the form )
{
Pem.2) =t (mz) [ Z(m-M)z2+4] (7.9)

where M'=M~% (see (6.7), (7.2)).

For 0<z<z,, m<M' the ray trajectories are the rays of ellipses having a common
center (0,0) and the halfaxes rg, a4/2(M'-m). For m=M' the ray trajectory is
a straight line r=rg. Finally, for m>M' the rays are deflected fzom the axis
and are represented by arcs of hyperbolas with the halfaxes rg, a /2(m-M').

For the intensity profile p(m,z) from the equation (7.3) we obtain

90

= —"—-—__—————r—- '
Q(m,z2) EM_M.)+{9°F‘I-]%+{ (7.10)

For the tangent to the slope angle of the rays to the z axis (the transverse
derivative of the phase) dr/dz=3s/3r, from (7.9) we have
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de
(m,2) =
az (m M')z (7.11)

that is, dr/dz>0 for m>M' and dr/dz<0 for m<M'.

Let us emphasize that here we are talking about the peripheral self-focusing
rays; therefore the solution of (7.9)-(7.11) is acceptable, strictly speaking,
only for szk.

Let us compare the solution to the problem (7.1)-(7.5) with the results of
numerical integration of the initial problem (6.2)-(6.5).

~ Let us consider the self-focusing of the beams with plane phase front vy (m)=0
for the following input distribution of the intensity

) 9u(r) = £, exp (._) (7.12)

| 5%+ (7.13)

W 9O= T e

, The distribution (i) is gaussian; the conditions (7.4), (7.5) and the solution
- to the problem (7.1)-(7.5) for it were written out above (7.8)-(7.11).

) The profile (ii) is presented as an example of distribution differing from
K gaussian. Here

m ( * Ko b
()= s&‘P)rdr = %:E: a*arctg 5, M=3Ea

=°'~ 2 m r,l( )= 2y T m (7.14)
Qu(m)= E cos ,  rlm)=a“tg i &

Let us note that the critical power M'y of this distribution is exactly equal to
M, (in this regard, see §4): M'y=2.0. Using formulas (6.17) and (7.7) and
equation (7.3), it is easy to write the approximate analytical solution similarly
to how this was done above for a gaussian beanm.

Figure 7 shows the typical path of the rays for self-focusing of a beam of
"supercritical" power; the focal and peripheral regions are noted as well as the
axial region including part of the beam with a power on the order of critical.

- Figure 8 shows the path of the rays during self-focusing of the gaussianbeam (i)
for m>M, obtained: (a) as a result of numerical integraion and (b) as a result
of analytical calculation. In essence, -in the region of the peripheral rays
Mgsm<M the results coincide graphically. Analogously, the conclusion of good
quantitative correspondence can be drawn, comparing the results of the analytical
and numerical calculations for the beam (ii) (Figure 9). Let us emphasize that
the analytical picture 1s valid to the boundary of the focal region =M .

Figure 10 gives the intensity distributions p(r,z) for z~z,; obtained from the
numerical and the analytical calculation. Just as for the ray trajectories,
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it is possible to draw the conclusion of satisfactory quantitative agrement.
The results analogous to those presented are obtained for the beams (1)-(ii) of
other powers (see Tables 2, 3).

Analyzing the results of the numerical and the analytical calculations, it is
possible to draw the genmeral conclusion of good quantitative agreement of the
results of the numerical calculation and approximate solution of the analytical
problem.

§8. Formula for the Focal Length

As was demonstrated above in §§ 6-7, the developed method permits sufficiently
exact calculation of the self-focusing aberrations of the beams from a broad,

in practice,important class of input data (monotonic data for the intensity and
phase distribution). This method in essence gives a quantitative description of
the behavior of the beam everywhere in the peripheral region m>My .

A comparison of the analytical and numerical results of solving the problem for
the entire beam as a whole, including the axial region, is of interest. Such a
comparison shows that the difference in the numerical solution of the problem
(6.2)-(6.5) from the analytical solution of the approximate problem (7.1)-(7.5)
does not exceed a few percentages for z50.5z¢ (see Tables 2, 3). Let.us note
that in this region good results are provided by the axial approximation [21]. i
On the whole it is possible to say of the solution to problem (7.1)-(7.5) that in =
addition to describing the behavior of the peripheral rays it gives, in any case,

a semiquantitative picture of the formation of the focal region and the formation

of the focal point on it. For example, let us consider the self-focusing of the

gaussian beam with plane phase front. For m<Mi<M the ray trajectories in the -
solution to the analytical problem represent a family of arcs of ellipses which

f or m0 contract to a segment of length

at “_ 1
Z, = irg;r-7==“ ) b4x =2

or, in dimensional variables (6.1)

Zy = k_q:* :

\[gf (8.1)
which coincides with results of the axial approximation. In the formula (8.1) -

P§ is the critical power defined in the axial approximation (in the adopted
dimensionless variables it corresponds to Mk=1/2)'

As was demonstrated in §7, the solution to the approximate problem in practice

coincides with the numerical solution for m>M, to a value of m=M,. This is _
explained by the fact that the approximation of §6 (smooth variation of the

function f with respect to m) is violated only in the narrow interval

(M—&m, M +6m). Thus, the "boundary ray" r(My,z) is well described by the solution

of (7.7). At the same time this beam cuts off the region in which the beam is
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focused on the point. This fact permits us to obtain the general formula of
the focal length for beams of arbitrary, monotonic smooth profile. Setting
w=M=2 in (7.7), from the condition r(My,z)=0 we find

(02 + Q2 2%y 2 i, 40t =0 (8.2)

where

N=f(Md), U= (M), Q=p (M), Ur=w(M)

and z; is determined from (8.2). As an example let us again consider the self-
focusfng of the gaussian beam by a plane phase front. In this case (8.2) has the
form (see 7.9).

Z((MatM)-M)Z2 4 i =0

and for the focal length we have

Zy=
VM' 125 (8.3)

In Table 4a the values of 2z, obtained by formula (8.3) and from the numerical

calculations for gaussian beams of different power are presented. 1In Table 4b
an analogous comparison is made for the focal length of the beam (7.13). The

numerical values and the values obtained from (8.2) are compared. The formula
for z4 is the following here

7. = o L4y - (8.4)
L M H - H jL
2\/'&“_.-3+ Togt
where 2
y=(5) =1
(8.5)
Setting for M/M =2-10
My
‘F% M
from (8.4) we have
2= (4 yyHE (8.6)
' -y

The results of the comparison indicate that in the range of powers of practical
interest M/M, =2 to 10, formulas (8.3) and (8.4) or (8.6) give values which are
equal to the numerical values with very good accuracy. The calculations for the
axial beams of power significantly exceeding critical, do not appear to be of
great practical interest inasmuch as the disturbances of such a beam lead to
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breakdown of it into "filaments" each of which contains a power on the order of
critical [28-30]. Comparing formulas (8.3) and (8.4), it is possible to draw the
following conclusion: the focal length is determined as a function of the power
to a great extent by the form of the amplitude profile.

The formula for the focal length (the self-focusing length) is of unconditional
interest for applied problems inasmuch as it includes the values experimentally
known or subject to determination (the power P, the distance to the focal region
zy, the nonlinearity coefficient e, the beam radius a).

A study was made above of the beams with monotonic smooth distributions of

intensity and phase. The nonmonotonic profiles correspond to annular structures

which can also be generated by diffraction on the edge of the "clipped" smooth

amplitude distribution. In these cases the behavior of the beam differs, -
generally speaking, from the above-investigated case of "monotonic" self-focusing

[31]. Using the solution to problem (6.1)-(6.5) here, we find that the defined

beam trajectories (7.7) for some z' begin to intersect, wnich corresponds to

going beyond the framework of the approximation adopted in §6, TFor z<z' the

solution to the problem (7.1)-(7.5) is applicable in any case for the description

of the initial phase of development of the nonmonotonicities.
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¢=3,43704 | |g 220104 | [¢=4,0 100
7,-0,291208 7,0, 180544 ", =0, 284004
m i) [ m il m 4Ly
0,07} 1,076 0,07 | 1,077 0,21 | 1,042
0,25 | 1,00 | | 025 | 1,071 0,38 | 1,044
0,44 | 1,081 | | 0,44 | 1,083 0,65 | 1,039
0,63 | 1,065 | | 0,63 | 1,004 0,71 | 1,040
0,81 | 1,000 | | 081 | 1,042 0,88 | 1,041
1,00 | 1,087 | | 1,00 | 1,089 1,05 | 1,040
1,19 { 1,085 | | 1,19 | 1,086 1,22 | 1,042
1,3 | 1,062 | | 1,3 | 1,022 1,3 | 1,050
1,5 | 1,065 [ | 1,5 | 1,086 1,55 | 1,052
1,7 | 1,087 | | 1,7 | 1,088 1,72 | 1,061
1,94 | 1,001 | | 1,4 | 1,00 1,89 | 1,07
Table 1
119

CIA-RDP82-00850R000300100002-5

FOR OFFICIAL USE ONLY



APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300100002-5

LUN UL Lvuiny Uol vivll

2 o 07m IIW  I5B L9W 2,378 2,78 38 3,58 3,9W
(1) PesyamTaTs UNCXCHHOIO XNTETPKPOBANKR

¥ 0,000 0,22I3 0,327 0,4I67 0,499 0,583I 0,6707 0,7688 0,8879 1,078 I,5771
U, 0% C,1%62 0,2950 0,3805 0,4641 0,5497 0,6420 0,747 0,8759 I,0595 I1,60I8
- 0.I73 0,I1467 0,2261 0,3007 0,3793 0,474 0,5695 0,69I2 0,8432 1,0585 1I,6502
0,228 0,108 0,I674 0,2138 0,276 0,3609 0,4712 0,6I70 0,802 I,0540 I,6339
0,264 0,067 0,0972 0,I339 0,I793 0,2462 0,36II 0,5418 0,754 I,0498 1I,7248
0,279 0,0380 0,060 0,0835 0,1I40 0,I650 0,2846 0,5006 0,747 11,0478 I,7389
0,288 0,092 0,0304 0,0423 0,0583 0,0889 0,22IT 0,4754 0,770 I,0462 I,7466
(2) PesyairaTs aEAIXTEYSOXOrO pacvera

0,000 0,22I3 0,3278 0,467 0,49% 0,583I 0,6707 0,7688 0,8879 1,057 I,5771
- 0,09 0,1940 0,2928 0,379%0 0,4628 0,549I 0,642 0,747 0,8771 I,0607 1,610
_ 0,I73 0,II04 0,I925 0,2767 0,3664 0,440 0,5728 0,6%5 0,8523 1,067 I,6704

0,28 1 = 0,075 0,227 0,352 0,4389 0,642I 0,828 I,07M9 I,7I7
0,264 & x = = 0.2254 0,4033 0,531 0,8030 I,0792 I,77%3
0,279 & = x % 0,I256 0,351 0,581 0,721 I,0818 I,80I7
- 0,288 & x = = 2 0.3 05640 0,751 1,0832 T.8137

Table 2. Trajectories of rays r(m,z) during self-focusing of a
gaussian beam (M/M =2, a2=1/2)
Key:
1. Results of numerical integration
2. Results of analytical calculation
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/) |
7\1/ % 1.5

. 3 , .
ELS ~— “ 4 5 9 I2
(1) UEcAEeHHOE 3HLWLTE 0,434 ©,2°I2 0,Is98 (,I47C 0,I232 0,060 0,0804 0,0665
(2) Copuyas (8.2) 0,500 ¢,2887 0,Ise¢ 0,I503 0,I291 0,I043 0,088 0,072
(3) Qopumyne (4, I5) 0,507 0,324¢ 0,2055 0,I575 0,I307 0,I0I0 0,084 0,0695
23 pacoer 23,
(4) ~ )a) QomycmEe paccrosEma rayccoBE: OyIEeB (i) ( Q= 1/2).
M
%g /M T R™ 2% 3T 47
(5) Umcuemmoe ymawemss 0,4933 0,3452 0,2839 0,2304 0,210
(6) dopuye (8.4) 0,4942 0,328I 10,2900 0,2667 0,2592
(7)  Gopuyas (5.6) 0,4658 0,3262 0,290I 0,267 0,2592
(8)  (6) Domycame pacorosmes myw=os i I) "Eanomoospasmoro” mpodmas ( o = I).
Table 4. Values of the focal lengths (self-focusing lengths)
obtained from numerical calculations and by analytical formulas
Key:
1. Numerical value 5. Numerical value
2. Formula (8.3) 6. Formula (8.4)
3. Formula (4.15) from reference {23] 7. Formula (8.6)
4. a) focal lengths of gaussian beams 8.

(1) (a’=1/2)
§

161

® i

b) focal lengths of beams (%i)
of "bell-shaped profile" (a =1)

05
£ w
Lol et
® ?“')'E:“P('ﬁ:) m 7=9 S 29 L?R "
9% 9 X
M- %‘:«“ M=Ea
(Egeh, dsf; M=b) (E,=%, a=ifz; Mwd)
Figure 1.
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Figure 2. Input intensity data (as a function of m)
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Figure 3. (i). Asymptotic behavior Figure 4. Slope of the rays
in the vicinity of the focal point: v(r)=as/8r4for z~2¢ (beam (i); 1
lines (1/2)r2(m,z), beams (i) £=2.51.10"4%)
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Figure 5. Intensity distribution as a funciion of tne
= coordinate m.

Key: .
1. (1) (z=3.43-10%)
2. (i1) (z=2.29.10-%)
3. (iii) (g=4.0-10"5)

125
FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300100002-5



APPROVED FOR RELEASE: 2007/02/08: CIA-RDP382-00850R000300100002-5

FOR OFFICIAL USE ONLY

3

- o o [ Y]

Figure 6. Intensity in the vicinity of the focal point:

distribution with respect to radius

(1)  o6xaors nepudeputtnnx xyvef

(2) Upmocesan ofancts (3)'0::

Figure 7. Behavior of the rays during self-focusing:

focal and peripheral regions
Key:
1. region of peripheral rays
2. axial region
3. focal region
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Figure 8. Aberrations (peripheral rays) Figure 9. Aberrations (peripheral rays)
during self-focusing of a gaussian beam during self-focusing of a beam of
of "supercritical" power (M/M=4): "bell-shaved" profile of intensity
numerical integratiocn (A) and analytical  (ii) (M/Mp=r: numerical integration
calculation (B) (A) and analytical calculation (B)
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Figure 10. Intensity distribution with respect to radius for z~zg
in the region of peripheral radius (gaussian beam, M/M=4). The
results of the analytical calculations (the solid line) and numerical
integration. The dotted line -- distribution for z=0.

128

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300100002-5



APPROVED FOR RELEASE: 2007/02/08: CIA-RDP382-00850R000300100002-5

FOR OFFICIAL USE ONLY

- VARIATION SYSTEMS OF MAGNETOHYDRODYNAMICS IN AN ARBITRARY COORDINATE SYSTEM

[V. M. Goloviznin, T. K. Korshiya, A. A. Samarskiy, V. F. Tishkin,
A. P. Favorskiy, pp 162-185]

Introduction

One of the basic concepts used for numerical solution of the applied problems of
mathematical physics consists in the fact that the difference scheme is con-—
sidered as a digital analog of the used physical model. According to this princi-
ple, the quality of the system can be determined not only by the canonical cate-
gories of the theory of numerical methods, but also by how completely the
corresponding discrete model carries over the basic features of the real process.

Thus, for example, for description of physical system the primary role is played
by the conservation laws. The satisfaction of difference analogs of these laws

must be considered the most important requirement imposed on the discrete model

of the medium. The successive application of this principle has made it possible
to isolate a class of conservative [1] and then also completely conservative
difference systems for the equations of hydrodynamics and magnetohydrodynamics [2]-
[4]. Here it turned out that one and the same difference scheme corresponds to
qualitatively different mathematical forms of writing the initial equations.

In this paper the completely conservative difference schemes for three-dimensional
equations of magnetohydrodynamics written in an arbitrary system of coordinates
are constructed beginning with the generalized principle of the least Hamiltonian
effect [5]. The use of the variation approach permits automatic obtaining of
difference analogs of the conservation laws as a direct consequence of the absence
of explicit dependence of the Lagrangian on the spatial coordinates in time.

A significant disadvantage of the variation principle is its invariance with
respect to the choice of the specific system of coordinates and form of representa-
tion of the vector and tensor fields. The use of the apparatus of tensor

calculus permits constructive formalization and simplification of the construc-
tion procedure and the procedure for realizing the difference schemes. Here the
difference equations are written in a unique form in different coordinate systems.

It must be noted that in the case of two spatial variables for Cartesian, cylindri-
cal and spherical coordinates, the obtained systems coincide with those presented
in references [6]-[10].
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In this paper a study is made of the properties of the constructed difference
schemes. It is demonstrated that the three-dimensional variation schemes of
magnetohydrodynamics have the property of complete conservativeness, and they
have second order approximation. The results of the test calculations and com-
parison with the exact solutions are presented.

In conclusion, the authors express their appreciation to M. Yu. Shashkov and
V. A. Gasilov and also B. Ya. Lyubimov who participated in the discussiovn of
the differential equations and made a number of important suggestions.

§1, Differential Equations

1. During numerical simulation of the motion of a continuous medium it turns out
to be convenient to use the formalism based on the introduction of the Lagrange
function [3]. In the absence of dissipative processes the Lagrangian of the
continuous medium submerged in a magnetic field can be represented in the form

EeN

Here the arbitrary stationmary curvilinear coordinate system x*, 1=1,2,3 is used
as the Euler coordinate system; p is the density, e is the specific intermal
energy,vi, vt are the covariant and contravariant components of the velocity
vector, Hi, H" are the ¢ovariant and contravariant components of the magnetic
field intensity vector i, @ is the region occupied by the medium, dQ=dx1dx2dx3,
g is the determinant of the metric tensor gjy. Hereafter it is proposed that the
Latin indexes assume values from 1 to 3; the repeating index indicates summation.

Proceeding to the Lagrangian coordinates qi, that is, setting xi=xi(q1, q2, q3, t),
axi/at=vi(ql, q2, ¢3, t). It is possible to rewrite the Lagrangian (1.1) in the
form

(=7 - Hodi ) p )iy ol G
Vi o . 8‘7[0 N 4
o i : (1.1")

',(“.--;-"l

where o ledegy, dl Sz e TV ey

The assignment of the Lagrangian together with the auxiliary relations reflecting
the characteristic features of the flow completely describes the magnetohydro-
dynamic system. In the investigated case the role of such relations is played

by the continuity conditions, the conditions of conservation of the magnetic
current and adiabatic nature.

2. The continuity condition follows from the law of conservation of mass of
arbitrary liquid volume ' < L

o My d [P - g pIGARG =0
n qu
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LI = pq (1.2) )

If we take the coordinates of the particles of the medium at the initial point in
time as qf, then po has the meaning of density for t=0. Differentiating (1.2)
with respect to time, we obtain the relation

dp  ,L GV
at * F7g oxr 7

(1.2)

which are the continuity equation in the curvilinear coordinate system [11].

3. The condition of conservation of the magnetic flux through an arbitrary
liquid surface I (the conditions of freezing for an infinitely electrically con-
ducting medium) is expressed in the form

_ EL_SH"@dS;=0 (1.3)
d+t >

here dS; are the components of the pseudovector of the elementary area [11].

- The values of /g dS53 are components of the vector directed along the model to the
element of the surface and equal with respect to absolute magnitude to its area.
Using the rules of conversion of the pseudovectors [12], we find that

o { q*
ﬁgH J@'TzidS(;K:O (1.4)

q

Here dS kx are the components of ds in the Lagrangian coordinate system. From
(1.4) it is easy to obtain the freezing conditions in the form » -

Vg ANGEEE A (1.5)

where the following notation is introduced

N

K "Dar"

D Vxf
J,: =J—D"x_t= %_exmne vy X

iKe q}" ’D~¢"

zkmn’ Likeg a@re absolutely antisymmetric tensors [12]. Considering the properties

Ixm
x

K AR .Wl . f?a:m
J( ’Dq, B S’- JJ ’D‘(;m =0 (1.6) -

- it is easy to resolve the equalities (1.5) with respect to ni

L3

J@H": (PK% (1.7)

131

- FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300100002-5



APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300100002-5

: FOR OFFICIAL USE ONWLY

From (1.7) the equaticns follow directly for the induction and variation of the
- energy of the magnetic field in the Lagrangian variables:

B He H 9 AV
| Jvl'g":—i—{=-H "éi +P" g (1.8)
d H;H;}; _HH oI (1.9)
aT{JT‘;{rT IT dt
L HP" v, IVGHTH” d Gmn
4 ’Df’," 83T at

tions (1.8) and (1.9) to be reduced to the ordinary Euler form of notationm.
Omitting the intermediate calculations, for example, let us convert the equation
of magnetic field induction:

. y X :
dH: T ;__ﬁ_"_?_\@_’!f Ko
aT*"“Tu“ g X~ +H Uk (1.8)
¢ < &
- where ‘U';,‘ = r?T“'a + 'U'q;.( ) rg,; are the second-type Christoffel symbols
(see, for example [11]).
4. The conditions of adiabatic flow are expressed by the equality:
4
de=-pd(F) (1.10)

- Jointly with the continuity equation (1.2) condition (1.10) defines the law of
variation of €

\P%E=—P gﬁ[’”ﬁ] (1.11)

5. According to the principle of least effect according to Hamilton, the motion
of the medium takes place in such a way that the functional of the effect
E = j“;‘[di‘ assumes a stationary value [5], that is,

to

5F- A "
- . € g H.HS_ 30g CSH- (1.12)
RS EIIL O S D

WG e, 0Gie kld. dt =0
S A E R

I card ol U(U(ra(}(c y K
S{?.[%u TEEU, T e §x

Using the additional conditions (1.2), (1.7), (1.10) from (1.12) it is possible to
exclude the versions se, ovi, i, G(J/E), expressing them in terms of ‘the
variation §x%.

Equating the factors to zero for independent variations, we arrive at the equation
of motion of magnetohydrodynamics:
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L dvi _ wrUtog,, e B
POGE - S 5R)= gag (m o
. - 1.
JOHRE  HYH 99§y (19
gipt 4 85 Pk IV
ol
where p*=p+EE .
8n

The equations (1.2), (1.7) or (1.8), (1.11) and (1.2) agree with the kinematic
relations dxi/dt=vl and the equation of state p=p(p, €) completely define the
behavior of the dissipativeless MHD-medium for the corresponding initial and
boundary conditions.

For distribution of the initial magnetic field it is necessary to satisfy
observation of the condition of solenoidality

oo ) i
dlfH: Hji— V—:.g,a'(@H)zo (1.14)

which can be expressed in terms of the fluxes ¢1 as follows

29 _ ) (1.15)
orX

§2. Discrete Model

1. We chall assume that @ is a unit cube in the space of the Lagrangian

variables qi. In Q, let us introduce the rectangular difference net with the

steps Aqi=h,. We shall index the finite-difference values by the Greek letters.

Let us placé a triplet of natural numbers in correspondence to each node:
,por)e W, = [(2py): *=0,4,..., ¥, B=01,.... 4,

520,4,...,0]
The set of all nodes de%ining the finite-difference cell (elementary parallele-
piped) will be denoted by Wi, considering that the index of the cell is equal to
the nodal index (a,B,Y)C W1, in which min (ot+B+y) is reached. The set of all
cells containing the given node (a,8,v) as the apex will be called W (a,B8,Y).
Let us introduce the set of cells w, and all the internal nodes wg, and also
the space of the finite-difference functions Ry and R defined in wy and wy,
respectively.

The values of xi, vi, v; and ggy belong to the nodes of the difference nmet,
denoting them, respectively {(xl)aBY} and so on. Then the relation between the
covariant and contravariant components V will be written in the usual way for
ecach node:

v, - Din R for (2B8s) e wy, (2.1)

(for simplification of the notation the index (0,B,y) is omitted in the formula),
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The thermodynamic values and also Hy, Hi J and J™ will be referred to the
centers of the Lagrangian cell and marked by the cell index. Since
((8iK) o Y} CRy,, the relation between (Hj),q, and (Hl) will be established

by the expression aby
oy _ ‘ X
l/‘,-/ol"@a' - <8"m >"'J’-"<‘I (H )“J’V ) (2.2)
where {(9 K Dol iy S € R,' is an approximation of gj; at the center of the
cell, for example, of the type
Gy, Z (@il
s Ve Uiy (4 py) (2.3)

2. Let us define the difference amalogs for the partial derivatives 3f/aqi.
For the Lagrangian cell (a,B,y) let us introduce the expressions:

a;& = t,% Z :;mq".P’JM Feat (- 1)"‘101
enpiieos (2.4)
%= A D fa v P
2 hz %‘ n.ao:“ JboJM by
1 g

%5 - n 2, F etoa, popt, gy (1)

o, p, X< 0 4

>

where {fOtBY} €R, . Expression (2.4) approximates 3f/dql at the center of the cell.
For sufficientiy smooth f:

2%
3 f= 5y L@_‘_ + 0(h?) (2.4)

here the bar over the index indicates that the approximation is made in the center
of the cell, 1’12-112+h2+h2

273
Let us note that for B-i-f the formula that follows is valid:
- (2.5)
,D Z '5'1""3()\; (a )

ve llly (4 ps)

The difference analog of the derivative E)f/i)qi defined at the node of the differ-
ence net will be introduced as follows:

(/af f)aqn =3 Z '}UQ(X.() T XK)I/ (2.6)
Ve liy(4py)

It is easy to see that 3;f (f Gﬁh) is an approximation of af/aqi at the node
with second order.
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3. Using 87, let us carry out the digitalization of the variables Ji and J
In accordance with Ji and J let us substitute the difference expressj' ne
Si and S obtained by formal replacement of the derivative 3/3qi by 3

sz = : mnej“’ ’a_ X% o5 x¢

1 —y? j
S':‘“E ejxeg x")xarx (2.8)
Here S; = J; BT +0o(h'); S’JI,@; +0(h') and the difference analogs of the
identities (1.6) occurring in the differential casé can be satisfied
{ Yoym M
S; 07X~ &8 (2.9)
in addition, let us note the equality
?Suapr
™)y
Ve Ui (4py)

Using (2.9) and (2.4), it is possible to demonstrate that f GRy, and ¢E§h, then

S 5, D:i:f), SiOF 4 = 32){5“\ o(ht)
D"”’f“ﬁ&)

08y

D 9 280 L ro.¢si) 30,.
PRI g ]J
Consequently, the expressionsz fd'a(%(‘)d and Z, "Frf;f‘:)“ﬂ

can be considered as d1fference analogs of the partlal derivatives B/B:{k reduced,
correspondingly, to the cell and the node of the finite-difference net.

(2.10)

+ o(h)
J5

4. Let us discuss the problem of approximation of the expression /§ in the cell,
Inasmuch as g, pertains to the nodes, the value of /g_ at the center of the cell
can be defined, for example, as follows

«Vg> = Z(

Jal/l(—(‘fs)') (2.11)
where (\(—9) le’f(g.x)d , here (<%>> = @\Jﬁ"— O(ﬁ!)

On the other hand, if the difference expression is known for V=J /— (see, for
example, [7]), it is possible to define the mean value for /g as

Visy
VG g = gﬁ% (2.12)
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It is obvious that <J§’>= @L‘.TJ + o(ht) under the condition that vaBY

approximates (/gJ) lEW with second order.
§3. Differential-Difference Equations of Magnetohydrodynamics

1. The set of Lagrangian cells :’h can be considered as a discrete model of a
continuous medium. i'I‘he state of each cell is determined by the values of

. i . . -
Pagy? Pagy® Vagyr Bapy? €aBy and (v}), v €W;(aBy). The variation approach per

mits constructicn of the class of differential-difference equations giving match
to variation of all of the MHD values.

For the discrete system of ;'n the Lagrangian is defined as the difference of the
kinetic and potential energy: -

J" = Z__ fﬂﬁgmﬁa (K-l‘pg— I’_‘d‘/!; ) (3.1) 7

apye W,
here KOLBY’ HaBY denote the specific kinetic and potential energies of the cell,
respectively 4 Z (U'K'U:})u
Kdﬁg - ¥ . 2 .
de lll( }t‘) (3.2)
e = bup* i
py pe 357 fupa
h
It is obvious that cf = Ja“ 4 (/7’) . Let us note that the approximations of

the kinetic energy of the cell can be made also by other methods.

For the difference Lagrangian, the influence functional according to the Hamiltonian

Fa = {:z Ih(“/ dt is introduced.

In order to obtain the additional conditions imposed on the variation of the R
functions entering into 07’4, let us consider the difference analog of the

continulty conditions and freezing of the magnetic field.

2. Using the expression for V introduced in §2, it is possible to write

Vd‘jsaf fu}x = mﬁpa, = Vg—] ? F +0(h") (3.3)

here m has the meaning of the mass of the Lagrangian cell which is invariant in _
time (it is assumed that the mass exchange between the cells does not take place). -
From (3.3) we have the differential-difference equation of continuity in the form

—_—

d dv _ A
thP_'PJt__O (3.4)
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The derivative of V with respect to time can be approximated dually:

a) If the expression for the volume is considered as a function of the coordinates

w” V;N (X . VEU/,(dﬁJ)) then it is necessary to set
dv _ 'av A%, _ X
Je W, (" sy Ve ll/,(o(Jag)

Inasmuch as V is a known algebraic function, BV/B(xk)v is calculated explicitly.

.,'K
b) On the other hand, the equality JV/A J "—B—@T can be approximated
with the help of (2.10) by the expression

= Si V)= 3 B gy

3.6
Vel gy (3.6

We see that equation (3.4) approximates the differential equation of continuity
(1.2) in the center of the cell if we use (3.6) or (3.5) for dV/dt. In the first
case this is obvious, for from (2.7) we have

g = ST (wVg) = J");r:ﬁ e 00
For (3.5), using (2.10)-(2.12), it is possible to write
*’“"‘(;}f:;) ok :5,1;;’%257 b (3.7)
+$%§%}= J % 'Dx" }a_-fo(h‘)f
"y ;2 (WK)” 'D(x‘) J (@27'2. + vt 2‘,@ « o[n)

8 Jew,mpy

3. Let us digitalize the freezing equation for the magnetic field. The
difference expression

<g's H*S! = @ (3.8)

on the basis of (2.8), (2.12) approximates the freezing condition (1.5) at the
center of the cell with accuracy O(hz) It is possible to show that ¢1 is

the "difference" fluxes through the planes passing through the center of the
cell perpendicular to ql, Performing the convolution of ¢1 k considering
(2.9) we convert equations (3.8) to the difference analog of equation (1.7)
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k. igr XK
VH'= @ (3.8")

Differentiation of (3.8) with respect to time leads to the difference equation of
jnduction corresponding to (1.9)

‘ .
(3.9)V::,—',<E =-H" ST{ + @i V" (3.9)

here by dV/dt we mean one of the expressions (3.5) or (3.6).

From (3.9) and from the induction equation written for the covariant components gk
by standard transformations we have the equation for the energy of the magnetic
fiald of the cell in the form

d(HHay)s % dY | Hx®OrYT VHH' dgw)

B dt \ 3% modt T T 4t (3.10)

As is easily seen, (3.10) approximates (1.10) with accuracy o(h?). For
d<gnk>/dt, just as for the derivative dv/dt, different approximations are permissi-

ble. In the general case, obviously

. < 9ix> frf (3.11)
d<g> . 5 By Wy
dt Ve iy (<pY)

If <g;> is calculated by formula (2.3), then (3.11) becomes

ol<ga>_ L % (r?s%rx ”()J (3.12)
d t 8 l}é UJL(O“P”

In conclusion, let us consider the problem of satisfaction of the condition of
solenoidality of the magnetic field. The differential expression for the diver-
gence H looks 1like the following

~ kK _ 1 “ovgHX
diﬂH:/‘/’-K"V—g* 5‘)??‘

Using the formula of difference differential (2.10) and expression (3.8) let us
approximate the given expression by the equality:

Lo (KIS ) P o (3.13)
v

However, on the basis of (2.10) the lefthand side of (3.13) is none other than
the approximation of HEk. Consequently, the condition

;9= 0 (3.14)
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¢an be considered the condition of solenoidality of the magnetic field. Thus,
Just as in the differential case, if at the time t=ty (3.14) is satisfied, the
magnetic field remains solenoidal also during the subsequent points in time,

4, Let us find the conditions of equality of the first version of the influence -
function F, to zero

€,
5h=§ {2 {my [ 2 @Gv, +

¢ (",PI)GLTJ, Je Ly ¢ p3) .
ot i He) -
*(T 59 )y - Sf,W] SV..J,,(HW )“P?r (3.15)
V.. e SH )y (v k
. - V.u‘p; T?f:— ‘pr _ e {is S.<g">°{}3r }}b.;),hjf’ll‘

Let us take axiaBY as the independent versions, and let us define their relation
- to the versions of the remaining variables entering into (3.15). Thev are estab-—
lished by the expressions:

de = fi (3.16)
09ic .,
o4 _"3% b« )
; VIEH s ~4*sV.+ P D7 sx*
P
§¢ = - A )

For 9V and 3<g,, >, we use two types of expressions corresponding to (3.5), (3.11)
or (3.6), (3.l§,)<. They look like the following

&Y= Z ’;%(Y;)u SX; _
D e llyy (%p¥) (3.17)

< gm) 5x*)
- N W
§< 8> = ué:zg(d‘pr)(a(x »

: o5 s i
' T K = (r)l’ (¢ " v
sv-S. 97 (8x"Vg) “Zwl(‘?r’”'w ) (3.18)

) COGxe h
5> § 2 Sy s 4 5y

Ve Wy (Aps) Ve i (p5)

As is easy to note, the presence of different approximations of 5V and 8<gkl>
leads to different dynamic equations, for the obtaining of which it is
necessary to substitute (3.16) and (3.17) or (3.18) in (3.15) and carry out the
corresponding transformation. Let us write these equations in final form:
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AV,

dy; 1!"!!' 92, - P+ L’!‘ Y.

M( 77 - p
(& DX ) Je ”/z“"g‘” A (2.19)

0", D<Gexdy o (HH )y
FD" l,r Z DX’ V 8
Ve Wy dpy)

(it corresponds to the case where (3. 17)).
: ; Uf L)
: M( ST CER ). v 3P 5 -
X "‘”’ “‘J“U (3.20)

L)
2, B2 L2 S (i),

Ve L, qu r)
(corresponds to the case where (3.18))

Here A s Pl Ha 1S
M Hgpy - / My AL
S ve th, (1) ’ A%

Since [ . }‘ ‘f et A ') the second-order approximation for equations

(3.20) is easily established on the basis of the formulas for §2. In equation
(3.19) it is necessary to estimate the order of the approximation of the
expression

2 Y r&,; .. fas fg,\,,}

sprth P
“ t Y IDX" ‘{ PI ( Vg% ()X' ')l' R D )"’f
VE 1y g Oc-llglx.)s;) -

Using (2.10) and the fact that (("')’: z ({")‘” ocht)

vuu(«”)
we obtain
"'m'u _ 1 _ ey o(ht)=
“Zm v oxi T 3 f‘ox« ZRS ~ ) g J-u;
v.e PG L eo(hY) = +0(h")
o2 e - 5

Thus, the approximation of the dynamic equations (3.19), (3.20) is demonstrated.

3. The equation for the specific internal energy can be obtained analogously to
- how this is done in.reference [6]:
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dE day __m 4qp
M = Pat = —"f,n Fra (3.21)

Equation (3.21) has entropy form; for dV/dt it is possible to use any of the
expressions (3.5), (3.6).

For calculation of the currents with shock waves accompanied by an increase in
entropy, it is necessary to introduce artificial dissipative processes. This can

_ be done by the recommendations proposed in references [13], [14]. We shall not
discuss this problem, for it is a subject of special study.

The digitalization technique with respect to time does not differ in any way from
the one developed in [6], [7].

§4. Some Properties of the Differential-Difference Equations of Magnetohydro-
dynamics

In this gsection a study is made of the properties of the difference system of
- MHD equations for cases where the dynamic equation (3.19) is used, and the

expression for dV/dt is given from (3.5). All of the results obtained are

extended without difficulty to the case with equations (3.20) and (3.6).

1. Let us write' the complete svstem of differential-difference equations of

magnetohydrodynamics: i Frye D e
M- 5 5=
_ adt 2 QX!
= 0 (RS - 0 (VW) o B 4.1
Sellcpr) X< A7 e kK 47
v &
] de dv o (T (4.2)
v =-pd = -p 2 Ay )
PV ae Paz "E"J;("J")u
i VH = @797 X -3
HE i dV X i
. Vd_t = -H d—g + @ aﬁ,'lf
d (H™ o - HH"aV in vk VTHHC d¢ 4.4)
de (V) =~ o N e (
m=Vp . (4.5)
(cl_it_x”r.' S opepese) (4.6)

Let us note that the system of equations uses the mixed components of the velocity
vectors and the magnetic field intensity vectors which complicates their notation.
However, it is easy to reduce these equations to the form of notation in which
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= only the covariant or contravariant components were used; for this purpose it is
necessary to resort to the transformation formulas (2.1) and (2.1').

2. Let us consider the problem of the conservation laws for the system (4.1)-
(4.6). As follows from the differential dynamic equation (1.13), the law of
variation of the pulse of isolated volume of the liquid Q'<Q has the form:

- d (o = (o VARSI _
dt }s)_, P Vi dlly = J‘P-q,‘a% (7 * » )dfg
Ay _Q‘;
- jp"?ggd - §(p'5"- M) s @D
DKl & ‘ g5 /9P«
.L
a
Let Q' in the difference case correspond to the set

’ N
Wi = {densdy pie 9 Re renyc @i The dynamic equations (4.1) define
the pulse variation of the set. Let us sum (4.1) with respect to all (0BY)&w'nh,
and let use the expression

Z Vupy ) <@>u}r
07, T Ba v Z > X
)elu,(d;;)’ 4 Ve U, mpr) xJv

As a result, we obtain the difference analog .7

d _ UAANCH]
dt{a%ew?“ﬂr wUdh - Z /H“P’ ( 2 ’D_ﬁ‘)dpr ’

(*pr)e (.d"
DG e>y YHH* . DG
LA (4 .
Z X Japy 8T r ZPL"'S‘W Z 41?"}7‘& * (.8
Ve iy ol pr) (py) € whl déll_ll(ap)

+ Foy

where Fyy represents the difference analog of the surface integral in (4.7).
Thus, the difference equations (4.1) are conservative with respect to pulses.

Using equations (4.2) and (4.4), analogously it is possible to obtain the
expressions for the variation of the specific internal and magnetic energy of
the discrete set wh' in the form

. e
4 S Magy Cugy = = 2, P Vg
i Pr Sway T L3
at upe g (apriewy dt (4.9)
H%) - H) dlp (4 POr UF)-
a?lf Z(t.—g”’—k)"}"—'- Z_(, 8% )"P’dt +( o 2’” (4.10
=pr)ew, “pi & Wy
_ (VH'H") d £gxeSupr
8 Jpy dt
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- These equations express the balance of the individual forms of energy.

3. Let us show that for the differential-difference system (4.1)-(4.6) the
analog of the conservation law of total energy is satisfied

S (V?f H /{')cl_(l,’,: é(Pz&-g_ %—")qr"@dsx

at S (4.11)

We obtain in advance the expression defining the variation of the kinetic energy
w'h. For this purpose let us write the equation of motion using the contra-

variant component v':
:' 4 I(
(“ r I3e ‘v) H’ Z

"J
= Ve w («-(pr) “ﬁr (4.12)
"":)< e Dy VH“H) gix /)( He P
™, v g

Performing convolution of (4.1) with vi/2, and (4.11) with v4/2 and summing with
respect to all (aBy)Bw' , we obtain the expression for the variation:of the
kinetic energy of the nodes

+x 7
: Z( U.v) = 2. { i ?Z:)r @), +

(.ge « Je lb‘(.‘", (4. 13)
(VH"H‘)«,,’Mgu),WL) } _(M.CP‘E); 'zr") j ,
} 8 Yy v 4% gy
+ A(N

Here Ay is the work of the pressure and magnetic field from the direction of the
cells bordering u'y.

Then adding the equations (4.9), (4.10) and (4.13), we obtain the desired
expression:

{Z(M 'lfdpr Zm..,,{g gii j_WJ=Al’H

) e e, (4.14)

As a result of 20 and 37 and also on the basis of the self-consistency of the
equation for the magnetic field and the entropic form of the equation for the
specific internal energy (4.2) the system of differential-difference equations
(4.1)-(4.6) has the property of complete conservativeness [3].

§5. Example of Numerical Calculation
Let us consider the motion of an ideal infinitely conducting gas where all of the
values depend on the variables t, xl. Let at the initial point in time

p=pQ=const, p=p,=const, vx=v1=0. The initial values of the velocity components
VySVE, V=Y will be selected as follows:
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o for xeo
v - . Gix
J Wosin 7 for 0L x4 €
0 for X >€
W, for Xeo (5.1)
U, = \ 74
7 ;—‘f’(i*&%e—)for ogxe?

o for x>€

The initial magnetic field will be given by the expressions:

H,=H1=on
0 for x¢eo
Hy:HQ‘: //,S.‘no_;f.v for 0 LX< €
o «for X>€
-4, for X <¢©
. 3
He=H"= { , X for ocxe€
v 4
M, for- Xx>e
Let
w. 2
Vi .

As is easy to see, in_the coordinate system moving with respect to the laboratory
system at a velocity Vyq1=(3,, 0, WO/Z) where aA=}_IY0/ 4mo,

the following expressions are satisfied

7. t
He = Hy' My = eond

. . (5.3)
'v"rz = ‘Ux”“_'u.'f = oM
—  _H
V- v p

The initial conditions given in this way define the well-known [15] steady-state
motion of a gas which is called the rotational or Alfven simple wave, In such a wave
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the transverse components of the vectors V and H are rotated, without changing
their magnitudes. Tt is possible to show that in the investigated case all
- of the wave phases are shifted with constant velocity, and the wave profile does
’ not deform. Let us note that for 2=0 the simple Alfven wave becomes a rotational
discontinuity.

Figures 1-4 illustrate the results of the numerical calculation of a simple
Alfven wave. In the figures graphs are presented for the values of. H;, Hy, vV, W
as a function of the Euler coordinate x at different points in time. The
calculation was performed for the following values of the parameters

Ho =1, p=1, P =00l Ho=2, (=L

The adiabatic exponent y=2,

; ////1 rs E;l 05 1 15 2z a5 _

Figure 1 Figure 2

05 1 16 2 35 =X Y Y R S

Figure 3 Figure 4
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COMPLETELY NEUTRAL DIFFERENCE SCHEME FOR THE NAVIER-STOKES EQUATIONS
[B. D. Moiseyenko, I. V. Fryazinov, pp 186-209]

In this paper a study is made of the problems of the finite-difference approxima-
tion of the Navier-Stokes equations for an incompressible liquid in the variables
¥, w (P is the current function, wis the vortex) in a rectangle. At the boundary
of the rectangle the velocities u and v are given in the directions of the
coordinate axes Ox and Oy.

During the numerical solution of the problems of gas dynamic and hydrodynamics,
it is highly significant to comstruct the difference schemes so that in them the
analogs of the conservation laws set down in the initial differential equations
will be satisfied. The schemes of this type were called conservative [1].
Further development of the principle of conservativeness has led to the concept of
complete conservativeness of the difference schemes in which additional character-
istics expressing the balance of the individual types of energy are reflected

[1, 2].

In the paper by Arakawa [3] when inwstigating the transport equations [several
lines illegible], reflecting the properties of the initial equations for zero
velocities and the boundary of the region. These schemes will be called energy
neutral and entropy neutral. The scheme having both properties will be called
completely neutral. The energy neutral schemes for the equations of hydrodynamics
based on the application of the Galerkin method were proposed earlier in [4].

In this paper the energy and entropy neutral schemes are proposed for the systems
of equations of hydrodynamics of a viscous incompressible liquid on nonuniform
(with respect to x and y) difference nets. The completely neutral scheme has
also been constructed.

The investigation of these problems has required the study of the approximation of
the boundary conditions in the variables ¥, w. Here it turned out that the known
approximation of the vortex at the boundary nodes according to the Tom formula
(see, for example, [4]) permits construction of neutral implicit schemes equiva-
lent to the schemes with nonlocal boundary conditions. Here the finite~difference
operators retain important properties of the differential operators of the
initial problem, and the scheme is uniform. For solution of the system of equa-
tions for ¢ and w for each 't=tj iteration methods are required.
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Paying tribute to the generally accepted methods of solving the Navier-Stokes
equations in this paper, a proce’'ure is proposed for calculating the votex
at the boundary of the region generalizing the method of V. I. Polezhayev [8]
to the case of an arbitrary region.

§1. Statement of the Initial Problem
In the rectangle G={0<x<a, 0<y<b} with the boundary T we shall consider the
system of Navier-Stokes equations for an incompressible liquid with density
p=1 for O0<t<T written in the variables §, w, Q, where Q is the head,
Q=p+(u2+v2)/2, p is pressure.
The system of equations will be written in the form

Wy = WEQ‘W{L%’ ) .w4m+w2lé'=o; Aba-® (1.1)
Here the "flows" Wj and W, have the form

-wi-—' - (* co%—mz +Qx) ' %’_”U’& ) VU= - ‘*’m)

W= (V0r-Ru-0y), Y=ue, & =Yy

Let us add the boundary in the initial conditions to the system (1.1). In T we
give the velocity

= uo(x.la;t) s V=V Y, ), (e, yel,

¢ “od{)f’lfodr-.-o' 0gts'T, (1.2)

The boundary conditions for the system (1.1) in this case have the form
1.3)
W= U = ¢
1= ot , W= Ub-g, ,‘{’:‘{fo(x,y,‘t)' xyeT,
o<t s,
Here yg is determined from the equation

“”b—b\-{{g-:. UoCoS (M, X} + waskﬂ.y)z'uo" . q)o(o'o):o

s is the vector that is tangent to T in the direction of the positive course of T,
n is the internal normal to T,

The initial values of Y0 and w0 will be calculated by the initial values of u¥ and
of the velocities u and v. We shall agsume that

1o 4,%.,,”. 0, Y e G, u=u,, vk o , e, Y)e L.
Then

0% U= Wy, by 2% $5=-0°, Y00=0, (1.4)
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Let us note that the derivative is also known with respect to the normal n to r
of the function Y,

B s (5, %) ¢ U 08 = Uog, (X)€" (1.5)

Let us assume that a unique solution to the stated problem exists. The equations
(1.1) follow from the system of Navier-Stokes equations written in standard form.

§2. Finite-Difference Nets and Functions

In the segments Ogxg<a, 0<y<b let us introduce points x0=0, Xy, ~Xy"a, y0=0,
Y1s Y25 e yy=b. The spacings between adjacent points will be denoted by

(2 .

Moox. - ¥ =
I"\'v}é'xm xe, F‘ Kef2 = ffmi' Yx. Let us also introduce the average steps with
respect to directions x and y:

- 0 oW )y . t (€))
=05 Ky, B (Wl ehog)/a , oci<M, Fin= 0.5 hyy

@ @ @ @ @ O] @)
7\0 =03 Y, tu = (mekx-y)/a, D& ked, fin =0.5 l"N-Vz .

In the rectanglef = G-UT'let us introduce the difference net Q= QU
of the nodes = (%, Yu), (=04, M, k=04, N, 2=0,06 T = [ N T
. Let us place the rectangle Hj€ G bouuded by the segments

- of straight lines x= X {t4ip= (ei+Xix 1)/2' g,: Yty o= uf k+Y K'.ti}‘,“/?,,

and the boundary T if (xj, yk) Gl in correspondence to each node (x4, yk,‘ Eﬂh-

The cell of the difference net  and its area and also the ?e§me?5 and its
length will be designated by the same letters so that Hik=hi g ). The
same finite—difference functions and the functions of the initiali problem
corresponding to them will be denoted by the same values. At the nodes of
the difference net 2} we shall define the finite difference values Yi} and wiy.

The finite-difference functions Q=Qi+1/2k+l/2 will be reduced to the intermediate

nodes XO=(x-+1£2, yk+1/§) [one formula illegible] and also the boundary nodes
(Xi+l/2’ yk}, =0, N an (xi, Yk+]_/2), jf=0: M (Qi+1/2k’ k=0, N, Qik+]_/2’ i=0,M),

_ the set of which will be denoted by Thgs %po=%q Y Tho» Hoz+1/ok+1/2 15 2 cell
- of the difference net Qo is a rectangle bounded by the segments of straight

= - =1 (1 2
lines x=xj, X=X;.q and y=yx, Y=Vgt+1? its area HOi+1/2k+1/2'h£+)1/2h1£+?L/2’

- Let us introduce, finally, the setg Q1 and Q5 of the flow nodes X1=(Xi+1/2,‘yk)e_6
and X2=(xi, 'yk+l/2)EG and alsn the sets Ty and I‘hz of the flow boundary r(lgdes

- 1
(xi! Yk), i=0: Ma (}Lj_Yk), k=0’ N’ ghS=th U I‘hs’ S=1’2’ H.‘].Zl_'l"l/21<.=hi""1/2*‘-l k,
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£ Dp(2) ’ '
Hy 5141/2 ti LN jg* *++ In the nodes O, and G-, we define the finite-differ-

ence functions vi4+1/2k, W2i+1/2x and Uik+l/2’ Wlik+l/2' Below sometimes we
shall omit the indexes and write V=Pi1es Q=Qi+1/2k+1/2, USUg141 /20 and so on.

Let us introduce the spaces Hp, HhO' Hhs' s=1,2 of the finite-difference functions
defined, respectively, by Q> Onp» nhs, 5=1,2 with the scalar products and norms

()= 2" Yo H , Mol = (0,a) "/Q, Y, W ‘[[
() ! {l’

A p) e 7 e:i'q-p-H'O, WQl={a,w) v p e lf

Le,

0]y =T WU, Il = (v, o,
'Q"'ll

'I \
2

Mg = 7 AW Wy bl = () g e,
'Q»L'J . B

, Let us introduce the notation for the finite-difference analogs of the derivatives
with respect to x and y. For the finite-difference functions

Zis= Z(xc,‘Js),Sﬂﬂ“*"/Z) ESK‘(’IS}JK},S“'.CP}L correspondingly, we deteriine
g (7 . R ,
Lxivgss (Zos-200)/ bl Sak, ket
N v
2y stz (Zska- Esu), Weprn , 5= ¢ b,

For the functions . .
ol 53 TuRiel, Ys), 52K, Kr b2

and  Eskels = E(Xs, Yrets) sl i+¥2 let us introduce the differences
1]

(Z4ss - Zos)/f\f‘:, (=0,
W N
Zafs:' (-2'4'05/25 - l;_yzs)/h( y 0<Ul<M,

(Zys - Zm-yzs)/hg' =M, Sk, Keih,
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and
(Lsyp~ 2-50)/*\—%'; K=0,

@
'ﬁst" (ESK*’/z‘ZSK-%)/ﬁK, 0< k<W,

)
(Zew- an-l/?.)/h/(:, K=N, s={,{+1/2,

The difference ratios

za?,l:l(, 24311& € ,j'e{" ioc{.;%lﬂ}{,
1Y irdhkey, € 7&0, zmm,zgh%ke%i’ z3 CK%'E.”(K’%&#|
h.

Let us introduce the difference net  with respect to time with the step size T

Qv = “L)fi '-"J"") 'b]f’/z_’ (5f}/2)t» f‘o.l:--- 3‘0’1/"3 }

We shall consider the function Q47 /9%+1/2 i, the intermediate time layers

¥; -
Qk}fuo%' Q"’Vlkf}/‘l- (-tj"vz) s the functions ¢, u, v, w, in the

. .t ') . . ). - B
integral layers tj: 150 b= ;) Wikst = Waats (t;) and so on,

Il sy :
o (07 0/

Y/, B } S 3 jed i

&2 (k)2 ued = (uu‘n’ﬁ’,_ﬂh‘ﬂ%]/Q (2.1)
and so on.
§3. Balance Equation. Approximation of Flows
Let us integrate ithe first and second equations of (1.1) over the area Hyy and

H)i41 /2k+1/2 and with respect to time from tj to tiii. The third equation (1.1)
will be integrated for t=tj.1 over the area Hyy, (xi, yk) GQh., We obtain

i == 9 ’ = } =

0F 0= M)z 0 (B0) g, (e ame Qi (3.1

— 14t/ e —

W) s "W ’{y‘]xé,wmw 0, (Xcots, Ynetl) € g, (3.2)
=2 il Sgo ~— itt e

B e g0, o

a7 WY
In (3.1) the values of Wi [ v W, s are the means from
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Wy (X by, 5=0, 8%, 54, M-Y,M, Wyl yg t)

5= 0, 472,%,, . N“/", N by the integral 'r=tj+1—t; and in accordance

(2
with the segments fy ) and ﬁil). In (3.2) the flows W; (%, y, t) and

Wz(x. Yk t) are averaged with respect to the interval T=tj+1_ta, and in accordance
i

with the segments h(2) .. . £ api+l d
gm r+1/2 and h21+1/2 In (3.3) the values of ? /9% an

i+1
3y"""/3y are averaged with respect to the same segments as Wy and Wy in (3.1),

wik is the mean with respect to Hyp from the function m(x,y,tj)-

Let us approximate le+1/2, w2j+1/2 in (3.1) and in (3.2) using the same finite-
difference expressions. Let us first introduce the average velocities

o _ @ 4 Fxet
Lk T Uo Licedy =d““%.) S Uo
Y

dy., <=0, M,
x=X¢ (3.4)

v. - _— Kk
Gk EU"&%“:U‘&%) S Uol dx, k=o,v,
x¢ Y=Y«

Let us also set
M=o =)y, =0, Vo= Vouc= T iy L=oM, (3.5)

— ‘ S
The finite-difference analogs of the i:'lows-\h/;lﬂ’j/2 w‘ﬂf‘/z in I' will be given by
’ 2

the formulas

Wi‘ifﬁ+%=‘g';lixfi/z,W2j% =170j£'ieu ) (=0M, (3.6)
W Tt W TR, K200
Let us set
“t‘-x+%= ‘h(,my, » Vaghu =-Yeispk, (3.7)
From (3.4), (3.7, that is, from
(3.8)

it | . j
E k+fh = ‘h& ‘.kf%l t=0,M, Zf‘os:t/th

- It .
==Vl k. K=0N, yiH_
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Let us define the finite-difference values of the function

1*‘__ Wit
Yo = Yo''ix . @y Yo ey,

- The means of y’a%x . DAAX , Y'D(D/a’ . ’M%g in Wlny'g W'za'f%

we shall naturally approximate by the values of

3 1/ ; ; ad
'\’(Dx’ alfk = V(»"X’é_‘f’)x{+%k. Q’Jt’-,:a/ﬁ+i/‘2

_ and so on, the means from dyi/ax, ¢y, w‘“, wg*

approximated by the values of ‘P'JQ i+l K, l{;v NSy mm R

will be

’!:Fuk-

The approximation of the means of uw and vw by the finite-difference analogs

1314 .
A and ,%2"1/2 will be indicated below.

At all of the nodes Qp3] and 9, (including the nodes at T') the values of

oF itYe TF 4

_W4 % 'wlﬁyz will be approximated as follows
2 i

w‘l tkedp = (vmi}tmyz %”‘/

- 10‘/ 1t
i i Mll/g K™ @ .

- *h ny,
Let us note that since .Wi Lxath .b’ 0,M wz “%K,Kﬂ)r”

9'4.\(4-% Q Klko-}/z) (xl,jpy‘ﬂ

TR 40%1‘ O«g 1.1}/114)( " \.LJ;.

are given with

(3.9)

(3.10)

respect to (3. 6) hereafter from (3.6), (3.10) it will be possible to define the

functions Y2 - and 4)¢
Q uu%. t=0,M (';?ﬁ" k=0,N

by the calculation functions

] o,y QY

Let us introduce the notation

Wk /(R oL b/ (258,

(“ )

i then ‘..A/(,it\ )= 4-o H ) l‘lx-%/@%é‘l;_
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The values of %12 uow and gz-_-'v-(‘) will be approximated by

different methods. Let us indicate three methods of approximation leading to
the schemes in  -the nine-point standard for the functions w, ¥ (the index j+1/2
on the functions w, ¥, u, v will be omitted):

1 8
) %L hl/zk = (’E‘tlkmmk t ulkmc\()/z.

Ay Lkedfy = (Wikes Dicet+ By, i) /2,

(3.11)
Wom iy, @ ““D(" u‘“’%*u-"(xsuuc-}’z 0<K<W,

=, y‘utN‘-yz Arokm ’lrd/zl(. Tk = 0( ‘J'uyzl("'
U -ol ™) Viegik, 04 <M, T i = D=2/ k
4 )

R) D Gag0= Wars 4,8 %f’u"‘iu}ék—
= o Wiets kntty Birbhicats + * (4-ol") Ty kST inyer b4,
04K<'N mi 4'_']/2”:: 'utﬁi/l"% WDyvdsy ~'4/2 !

(¢1]

OKedp = ’Ua/zlt:r%m}’m% xd«}’z 0(‘“-4119.}/ h}fh’} R (3.12)

+(i-eC- Y Uispxey, & EHakel, 04CC M, %M“%
}{KH/z GM /zk#"/!

B Here

(ASE 7 (ucem/L* u%%)/,, u,/zh% (v; Wzk'l
1 Ui'«,‘i K)/z , (0&}/2 K+ 42 =0.z5<(l)£ﬂ_m£+m&m+ (D*"‘”W*"Q,
DA ppc= T itk (Qak*@u)/2, R irys = (3.13)
= Bpunly (Oiars 0005, Wertho= Terks Yo, Tyt
o(;éUtTc,;;h%f - A Wifs k=34 , 0&<KeW, ‘Ei«—%N‘_ﬁ”%N "

Uowth = Tajpindss T ke d) = o(& /v-wy,m}, +(4-

l)U',/“"
0<iaMy  TFfyuess = Gm-42 ke,
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The values of ;, v are expressed in terms of Uik+1/20 Vi+1/2k’ and the latter,

with the help of (3.5), in terms of Vi - Therefore

4e4/2 (’"’ 1?5/2 ’/'
R = (+ 9 se12, M=4,a,3.

'l'h8 expressions for the flows Wll/z,
Vitee Let us define them. Let us introduce the initial velocities

d,ml
o @ -1 p
U® (el = (.kk*’/z ,\ un[xtg{’ v (X %VA’/I) € \524-'2;

"o

VT atsie= h“,l ( ,erl dx, IR ARV

‘.n[‘,{_

WO iy - 'u-U(.KI K= =N, 7, V= wﬂ LK‘{: o' '

Let us set 0 —

1}‘\:11 = \{‘L: ' {—'xl‘, "Ja,;)e sQ{\

where the function Eoik is determined from the equalities

—- oy

\Po?l\'-t}'zkm ’U z-(. p‘j lf?/t /“ (R ’}l q“ B (

0

The function wik will be defined by the formula

% = B = (o & e
0= Wye =0 )ﬁdl(‘ (ﬂ")gm' (I‘,“IK)GQ.“
Let us introduce the operators

A Afa ), A g uv)=A gy 10)+
+ Aha),

At ¥or= 4 W & (x %k*vux),@u(t)‘{’)un 'ﬁ""( D™ ‘l'm-}fk)
- K#ow, U\ﬁz(u)ch,=4_ (Wyeg- o). (A2 (W)¥)en=
-h(‘l) (,ulﬂ +5‘N“‘ﬁ)| L*o M (Aﬁ‘_("') ?) ‘K K‘K,

K=0,A, LAM("N)‘-,‘= 'uﬁix, ¢=0,M.
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At the other nodes
At ®W)oe= (Ya) 2o M2V = (Y9)5 i, (eguels,

so that

(A,‘ (u,u)‘lr)&.—. M) 2w * (""3)9 K= (AN).’.(, (2, Yu)€ Rp, -

The equality (3.18) can now be written in the form
. 0 0 -
0 = (A @), oyde Ty (3.19)

The approximation of w?.k by Ty is the known Tom approximation.
§4, Difference Problem in the Variables ¢y, w, Q

In (3.1)-(3.3) let us replace the average values by their finite-difference
analogs. We arrive at the following difference problem for the equations

= '{' . b —
o7 o= WVs00- (WHgac, eoelly, (4D
) 1+
(Wir{?: {1ty k*’/z* (W’Zh’,;‘l"d»\'ﬁ%k’%=oi (xﬂ%‘g""'/l)egh") .2
LA"V\’/M') k=" 03311 y (X, 1&“)6 824, (4.3)

Under the boundary conditions at the nodes on T

h2 i ; e L
s txetp= Uog gy W =T, (=OM, o
s ML ¥y _ ik
w"- ¥ K= T % i+%k:wi\2k —;U_O‘{:(K, K=0N ,
- M g .
- wit= T, (=o€ T, “s
1=0,14,... 'jo ’
E in the initial data
? e (4.6)

“I’C‘L_—W& y Doe= le ("de‘jx)eﬁk.‘
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Here Wi TH/2, wzjﬂl2 will be defined by (3.10), (3.6), W0, w;R, by the

o ¥ o, by (3.5). The values

formulas (3.15)-(3.18), T%ikﬁ by (3.4), (3.8), wl vl

of g)il*‘/l. S will be defined by one of the formulas (3.11)-(3.13).

hat for resolvability of the equations (4.2) with res

Let us note t
it is necessary that the value of

. i+1/2
function Q3T Cquy /9s1/2

oo W ity ML @ 344/, ]
= - ) 4%
5 %6 hk% (WLMM’, 1 om{)* ?;.o. L\l:'% (Wuiy:., - W;,g,% o)

vanish.

i §41/2 y.i+l/2 = 341 < §+1/2
Let us substitute Wp s Wy from (3.6), up ikb1/2° VOJ 1+1/2k
(3.4) here; let us use (1.2). We find that

m i
S = (& w v dx)T = 0.

Let the problem (4.1)-(4.6) be resolvable.
possible to introduce

w‘n% i WM;‘ _ L()jﬂ ‘
Ve = OyE kash o Wo Shpu== S TOAT
jrL
0

(POL;;‘. :_‘i’_gn , e Y ) er 1 0o =
Then from (4.1) we find that
M el — 4 —_
((D + Ah('uo“f U'oh') (-P" ):E(‘Kz O, (OC.:. 1'9")6{2‘1;'-‘

Hence also from (4.6), (4.7) (_(QCQ'thFbiﬂ“. (¢, Y ) € rk)
] it follows that (?ij“"-—'- et ooy, Ye) ey
and the following equality occurs
J+i ik i . ,
mi‘.: - (_Ak(ub , Vo )q’ ),K'(I\'\é;()erk.
’ Thus, from (4.1)-(4.6) it follows that the Tom approximation of t

(1.5) occurs for all tjEQT. On derivation
tion was used for t=0, (%1 yk) €Ty,
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Now let us consider the problem (4.1), (4.2), (4.4), (4.6) and (4.3), (4.5)
will be replaced by the equation

(MEE ™) =0l (e ) € T o, -

For resolvability of (4.9) with re ‘pect to the function wj+1 the following condi-
tion must be satisfied:

it ni ()
Z_, wa. Hoe™ Z(’J vog lc. + z (Wey ‘U‘O )h" =0 (4.10)
Rx0 =20
where "_ 1 J
) i3 \ JH .
Ve = W) =0, M, U = oh:.“' k=0,N,

The equality (4.10) follows from (4.1), (4.4), (4.6).

Let__}:_lie problem (4.1), (4.2), (4.4), (4.6), (4.9) be resolvable. Then
Py =¢0J+lik’ (xi’ Vi) €Tpe Let us demonstrate this. Let us introduce the

function Yol ol e tyé’& (x‘-'\,“)en‘ with respect to (4.7). Just as

gbove we find ‘PikJ E¢ik3 l, (%4, yk) E-S-Z-h. Thus, it is possible to consider
instead of (4.3), (4.5), the equation (4.9),

Usi the equation (4.8 e exclude the function Qit1/2 from the
sing qu (4.8), we exclude c Q 11/2k41/2
investigation -~ we break up the problem, (/n l) (4 ?) into two problems -- the

problem for determining the functions %1]( and the problem for

+1
determining the function Qi /21+l/2k+1/2
For the system (4.1)-(4.6) the energy estimate will be obtained below.
§5. Equivalent Difference Scheme in Variables {, w

The equations (4.1) contain the desired function Qj+l/2i+l/2k+1/2 only for

i=0, M and k=0, N (in the Ty nodes). We shall consider the equations (4.1)
only at the nodes @, and at the nodes Iy we shall add equation (4.8) to the
system (4.1)-(4.6). Let us consider the problem
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T Y iy
OF i = W) 4o - (W ylgc«. e,y € 24,
(Ah (Eo"u,\‘)’o;'ll‘*,'“)g,g=’mi€:, (X, Yx )€ ﬁk!

~p itV i ,
w,‘ 2 = 'uo Ee (20,M ,83 kg, l(,l/7 ) ‘wzj"yi -

is s, =
- TRl ,
= Vo’a_sk' K"-"-O,N, 3=L,I:t1/1. (5.1)

) 1 ™ \
‘h.{*t_—_ rP;inlt‘lu @, Y€ 'y, J=0,1,0 jo,

0 0 0 Ie)
Yoo = Pow 5 @@k, (X0 Yw) € Sy

Let the problem (5.1) be resolvable. By the functions wikj+l, wikj+1 found
from (5.1), from (4.2) we find QJ+1/21+1/21§+1-/2 (with accuracy to tl}e const:_ant).
By (4.7) let us introduce the function ¢ikJ+l- Just as before, ¢ik3+15¢ik3+l
and ith jtl ; ;
MR o " il
w1 iKedf = %jt (kg , Wz ebhk = = kE’J('.E v K.

Hence also from the equality
iﬂ. ) =it = et 1+l
OF (/I_k('ub Vo )* }{'L'k» f.xd,'-}u)éru_‘

it follows that the equation (4.1) is satisfied on Ty. The problems (4.1)-(4.6)
are equivalent.

Let us discuss the results obtained. For this purpose let us consider the linear
problem with o‘bd = %zf- ) (or we shall consider that 9;“%1 are known,
they are calculated with reslgect to Y;; and wjy from the preceding time layer).
In this case the function QJ l/zi+1/2k+l/2 can be expressed from (4.2) using the

generalized Green finite-difference function in terms of the values of the
desired function wipdt/2 (w3 I*1) on Ty, Substituting QJ+1£3~1/21{+1/2 in
equations (4.1) for (xi, yy) €Ty, we arrive at the nonlocal boundary conditions
(compare [5]) for the function “’ik3+ :

jt! it¥2 ik
@F k= T 3w Oxy Ke P
Bok® 3 X i St DK (xn,}m}w,,,,.‘%m L=0,M, (5.2)

v N ('Xn,"u)érh )'+7 . y
k=t 5 "\Z . Ity .
P k"?m" 1k*}/"*(%fv.~?tmun"9”} Wt k=08

Here Kjx (%, Y » giuj+l/2 are known functions. The problem with the_condition
(5.2) corresponds to the solution of the system of equations for mikJ
Qj+1/zi+1/2k+l/2 (perhaps, with the help of the Green function) apd it is
equivalent to the problem (5.1) for the system of functions mikj and ¢1k3+1,
the success of the solution of which is defined for each ti;q by using a suitable
iteration process. In the problem (4.1)-(4.6) the Tom conditions are satisfied
automatically, the operator Ah=l\h(0,0) (ug=v0=0) in the functions

Pi=Const, (%, yk) €T, is nonpositive an self-conjugate: A’b’-/\i $ 0.
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Equation (4.1) is written in the form

s ¥y e 1%
03 ic= L (@5 e Fa (5.3)
)Y
Here A are the nonlinear terms approximating the transport terms,

Lh(mj+1/2, Qj"'i]/j‘)? is thg_+:JL.inear part containing the operators acting on the
functions “’ikj and QJ /21+1/2k+1/2'

For ¥4, =Ygii=const, (xi, Yi) STy u0=vo=0 the following identities are correct
HYRN v s Y )
(g ¢ ™) = (8 (L™ QMY), p *¥)=
= 2 oL b 2 )
V™S, B s a5 (vl + ¢4
M2y 2 S
I ) = 0.5 (o ey v 2),
For other methods of approximating (1.5) than the Tom formula, it is also
necessary that the equalities (5.4) exist. The Tom approximation also reflects

the uniformity of the difference scheme everywhere (in T}, and in Qh). The same
equation is used for approximation of the balance. In all

. vy Jrd AL
(xs. %)G nﬁ , ch&r‘ = /l)—g L‘K— uﬂ KI"%
In the case of the steady-state problem ( G)é"z"ﬁo"‘é' ='F°:¥"0)

it is necessary to add the following condition to (4.1)-(4.5):
An (T, To) § )y, =~ Qo (20, Yre Ty (5.4)

§6. Families of Neutral Systems. Entirely Neutral System
Let us study the properties of the scheme (4.1)-(4.6) for various approximations

of the values of %1 and % by the formulas (3.11)-(3.13) under uniform boundary
conditions z

e By 0, = onst,  Cydel’ (6.1)

In the equation (4.1) written in the form of (5.3),

b2 o (n) m w Y (6.2)
&'L"‘- = %b'lc = - (%L )g\'kﬁz )3;'1(, (I(,‘jk)é Qk,
Mm=4,2,3,
Inasmuch as W’fk’/‘ro , l‘:o,M.‘Wh"ﬁ:O .Kzo,N , in (6.2) it is necessary

w ,
to set ANZ20 . oW o koo, - At the nodes
met-yzl "9‘), K:O’\Na (xi-yk*%), c:o‘M' 'W;)fyfw-zng
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will be defined by the formulas of (3.10). Accordingly, both %3’:’3% K+ k=0W
_ and %zjf;/,i..i/z, t=0, M will be calculated by the formulas (3.11)-(3.13)
(under the conditions (6.1)).

For the initial problem (1.1)-(1.4) under uniform boundary conditions we have
the identity

QFE 2 B B
9%+ me dxdy=0, | D¢ dxdy =0 .
where %::-?21_'0_99_3" RPzuw, V=D,
X ’3;

For uniform boundary conditions

[ Do dxdy =0 - (6.4)
¢

The equalities (6.3), (6.4) indicate that the transport terms do not make a
contribution to the energy and entropy balance.

We shall state that the difference scheme is energywise neutral and entropy
neutral if the finite difference analogs of the transport terms

il - 'f'!‘; '(aj"".

@ m AT g do not make a contribution to the energy
, . P, et I Lo ld

balance { /Wy i) 0 and the entropy balance ¢ ot (0"’-"):-0 .

1f both of these equalities exist, then we shall call the difference scheme
entirely neutral.

In order to discover the family of energy neutral schemes, it is neﬁ:essary under
the condition of (6.1) to calculate the scalar product (R 14 w"’;} nel 2.3
’ 7 7%

. For the calculation we find that .
T @ jedf . JtH) =
_ (aﬂ'm,‘ vl,f;’,} =0, (D sy Jf,n) =) 6.5)
S 10 it St 8 Y ‘4
that is, the schemes with o B FO‘”“"“; QL gz (formulas (3.11),

(3.12)) are energy neutral. For the schemes with §) A ;10:.3»;'1,*”.5
we have entropy neutrality

s (3) fe L 't / —
- CP i W’ 7) = 0, (6.6)

N

For energy neutral schemes on the basis of (6.5), (5.4), (5.3), we have the
analog of (6.3)

E + v o) =0 (6.7)
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Let us consider the single—parametric family schemes (4.1)-(4.6) with the
parameter B
@ ¥

R * P D () U oy,

NE7d _ (¥ 244
R fhya = RLIE + APINTTT

(6.8)

It is obvious that this is th? family of energy neutral schemes. Let us calculate
the scalar products from “’ik times %NV for

VLAY e G Qe

We obtain

; M1 N
(9(1))*4/: coﬂ'V?),_.. Z. Hm%zﬂx ”J/zk mud/a)“(}/f
c=» u-
A-r Wi . J
t :;?6 % Ha Cked U; ﬁﬂ, mmym “V r H}/
(@ 1%, @I+¥E) =— 05 F*H,

Comparing the last two equalities, let us note that the energy neutral scheme
(4.1)-(4.6) from the family (6.8) with B=1/3 is alsu entropy neutral. Thus, the
scheme (4.1)-(4.6) with

% 1) j+%; 2] = 1+

%l K= %i. 4_,-1/:1( '&%;: 1/:12/1( = %1"021/2 k';
% Ui @ j+¥4 S iz

D Chedy ™ %fum% + Ry ceets = By Ckrtl.

is completely neutral. The single—parametric family of entropy neutral schemes
is constructed by w‘” atati) and %. Similar approximations in a

quadratic network were previously found in 131.
Notes. 1) Instead of (2.1) it is possible to introduce

b

(6.9)

“‘/ G-COLI("'(i 0‘) w“ /q, 6-‘11‘4 +U‘d)%{:

In this case it is necessary to add the temm

o050 (NWELS + I8 N: ), BtEotox tjeume0,
if ¢30.5 to the lefthand side of (6.7). The preceding statements remain valid.
2) The scheme (4.1)-(4.6) with . Q4 and Q=9 remain energy neutral if
XL 404 A @B are calculated by d}il(.j*-l/z from (6.9) (020.5) and ¥jix. The
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schemes with FaH 3'(”1)2'(5‘)§, =3 are also entropy neutral if

- o and %B)are calculated with respect to m3:+1/2 from (6.9) (020.5) and w.j.
- In these cases for mg'{;l, wﬂ]("'l the linear sil'}s(tem of equations is obtained.

3) Let us present the two multipoint appreximations of the values of % and %
leading to entropy neutral schemes (4.1)-(4.6): 1

a) EA T 31(244

- k, %2 Y %74 =j( & ixn ﬁt'im*a'k &:k)/
o= EJ.(,‘ 14,

N B =((0Uk+yz * G?L'k_%)/ﬂ, I< k<,
w Yy =~ o a
L4 6'0._4/-.%’ O vty = (Wiker+ wt’k)/l,

b) A, ik = (E’."HRE.'HK" Eckd"k—)/i, %2

ke =
— 2
= ”1 k2,

_ Here, in contrast to a) gox: 54/!,“ E"\tz (B4t
i ' =3 —~— =
) + a’“%“)/-z, O<L<M, DOmic=Wpy-s4k, Wessite = (Dipgi® &)4‘;‘}/2'

Using a), b) of the approximation %w. N it is possible to construct the
three-parametric family of entropy neutral schemes.

§7. Supplement

3 &)
1) Monotonization. The expressions for %1 and %2 correspond to the central-
difference approximation of the tramsport terms, which for small v leads to
nonmonotic systems. The methods of monotonization of the finite-difference
equations (approximation of the transport terms by one-way spacings, monotoniza-
tion with respect to [1l], [6]) corresponds to the introduction of additional
fictitious viscosities, that is, replacement in Wi, W of the variables

Vokit1/2kc ANd Voyile1/p BY VR 51 0 Oxian/oie @0
V{44 Q2iketh) D yikedh , Puietin, Pricel = 0.

Monotonization using the one-way differences corresponds to the selection of
\ hosta |z, . T AT
Qiiti/zk = lRiU”/z‘(I: Y l'u'“‘%“r ?ukv%’luuu!/,‘: -;\1‘:/; IU:\,Q
For monotonization with respect to [1], [6]

2 2
B . \ = Riirkik = Rotets
- Ll = —4 ey = ik
? t72 ’ ?'ukr% L+ leim‘/tl

L+ 1Ryietikl
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We shall consider the monotonized schemes (4.1)-(4.6) with %1_=§b1(3' %1:%20)

for the steady-state problem. The equation (4.1) for w =0 using the finite-
difference equation of continuity 'HQCK'O"G‘ 9 k=0, (xt..\}.()egk

following from (3.13), (3.7), can be converted to the nondivergence form

(1 G
(Ir'w @) e + T ¥ @)+ (MuQ) 4, =0, 7.1

w @
Ik Hw , T_;‘ (y)0 are the finite-difference analogs of the expressions
2 2 2 2
\’-D“Z??f‘ M?_w.l,/,bx ! ﬁ(D/Dy ~’U"DLD/Z)H : Here it turns out that
Ly (4}, Lt(‘}‘) are the operators with diagonal predominance (the
comparison theorem and the principle of the maximum are valid for (7.1) for
(MpQ) 13=0) (see also [6]). At the nodes (%, yk)c-:Qh

TW w . a__ u ’
(L wa) k= (Ly w)ik = (ol Livyik Oxte fx +£4r°(()'u¢.ylk ‘l{c%l‘)

H ) 2)
EC9 o= U)o it i
(L @i =Wt P o, (LA5%0) . =V ((£40)04) ey
(M40) o <0 P X ik (Lv @) g (( f&) ﬂ)‘; 'Kk )

The schemes % = $™ n=4,2, F= D are distinguished from the scheme with 5
1 l .
- by the terms Qui)i *9‘2)’31 r“*t O(g JJoL:-i,Z in the smocth functions.

2) Approximation of the boundary‘conditions for w and ¥.

In the above-investigated schemes it+%:72necessary to solve the S-};sttem of algebraic
- - + p 1 ?
equations for the functions m:ijl, 0J 141/2k+1/2 OF wItli ljJJik. However,

this is complicated. Usually it is proposed that the schemes be used in which
the functions 141; and w%ﬁl are calcx_llilted successively. Here the question
arises of determining the function w{ﬁ at the boundary (the near-boundary [8])
nodes. Here }et us present the procedure for "finish calculation” of the
functions m{f in the near-boundary nodes generalizing the method of

V. I. Polezhayev from [8] to the case of an arbitrary region C.

- Let us draw the straight lines x=xj, 1=0,+1, #2, ..., ¥y=yk» k=0,+1, +2,...

Let us denote by @ the set of points (%;, yi) &G and by Ty, the set of points
- of intersection of the indicated straight lines with the boundary T, =0 Ul .
The node (xj, yk) €Q will be called the boundary node ((x;, y,) €T}') if
at least one of the nodes adjacent to it with respect to the directions 0x or Oy
belongs to Iy, Q'h=§2hl“ . From each node (x;, y,) GI''y let us draw the segment
Any orthogonal to T to the point (%, yk) GT‘L On T p=ug, aw/an=¢;on,
802y/9s2=yggg are given. Let (x5, yi) €Tp', (%4, yk) €T be the ends of An.
Let us use the Taylor formula. We obtain
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YWYt Puctrr 41 Antec A (Y, £) + O (aniv)

(7.4)
@ (61 ToiF b a0Ton (5 o) - Ay (e ),
The values of w‘;]_kl/z, w‘El/l in F'h just as in [8] will be determined from
t4s ; une TV
Wiy = (.OuC =-@h? )ik, (R¢iYx) € Li, (7.5

Here and below the value of A} at the boundary node will be approximated by the
value of (Ahw)ik from [7].

j 1/2 j+1

- At the nodes (%, yi ) €2' j, the functions w: » Wy, can be defined by using the

method of variable directions (just as in [8]).

woifio h&:\me”’) (T u)w)

05t (7.6)
. pil y - “‘1,1
L IS )r,, = } ‘:.,'1‘ N
[.—_ l tl ( ‘ ) ! )lI( ( ll S ,-' %, 1-'(.‘]1)&5},\.
On the basis of (7.4), (4.3) for determination of dr}_ltl we have
. “‘J. 17 . 4y - fq). , ) \"
- -_'-"‘-;.'i" bl 4 kT Ay (f:;k . (R, 13-() &I Wy (7.7)

An?‘ ARGy
"t

)LK L,L :‘x‘ )n)é;&lf‘., \h‘ = I;'L -\xi'l\?“)erﬁw

- 3=0, 1,..., jg- At the initial point in time v2 1k and o @ = (a0, )
are the given functions.

In the vicinity of the angular points T at the nodes I''y where the pair of seg-

ments Anj, Anp and the pair of functions ¢; and ¢, are defined instead of the
first equation of (7.7) it is necessary to write

M 1 A P - })h’
( As . " +-= )‘.:— /
Yy i (Ahf A"u ~ Al'lz Anf )‘

In conclusion the authors express their appreciation to A. A. Samarskiy and
B. P. Rozhdestvenskiy for their useful discussion.
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- NUMERICAL SIMULATION OF THERMAL AND CONCENTRATION CONVECTION IN CHEMICAL REACTORS
[B. P. Gerasimov, I. S. Kalachinskaya, pp 210-227]

Introduction

- In the processes of heat and mass exchange in some chemical reactors the convective
transport capable of faster and more efficient course of the reaction has great
significance. The purpose of this paper is numerical investigation of the

thermal and concentration convection of a multicomponent gas mixture in a cylindri-
cal reactor of circular cross section. In this paper a study is made of the
structure of the flow of the gas mixture as a function of the reactor dimensions
and the nature of injection of the mixture, and a study is also made for the

model reaction of the reaction rate as a function of the flow structure.

I. Statement of the Problem

Let us consider mixed convection of the multicomponent gas mixture in a cylindri-
cal cavity of height &4 and radius R, on the axis of which a rod of radius aj

is located (see Figure 1), The rod temperature T; exceeds the wall temperature Tp,
where both temperatures Tg, T; are constant in time. The injection and the
discharge of the gas mixture are steady-state and take place through the ends of
the reactor. The injection rate is uniform with respect to cross section.

Tnasmuch as the pressure gradient and the flow velocity are comparatively small,

= the convective motion of the multicomponent gas mixture in the reactor camn be
described by a system of two-dimensional nonsteady-state Navier-Stokes equations
for an incompressible liquid in the Boussinesq approximation [1] jointly with the
equations for the concentrations of each of the compoments., In the cylindrical
coordinate systems the initial system of equations can be written ia the
following dimensionless form

(uw) Uvw) . L e al
g—t‘l t aa;w - T ke Ar.f("(r)w) 6 ¥
= &, b
_i-l. ‘¢
_g_%_f_ . af:l;') e’ a(::'/) =é‘¢7[érf(a‘:(r)ywd7')'f¢'

A6, Aul) , LAxVE) L V4 Eo,..
2L, Aug) LAY &‘_L&Af(lf{r)radl:) €r-5)

=L n
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35 R (E40) v

A4 £ Y AU 4
« = T 2t v~ Tt 2% W= g [%2

b ’

Here ¥ is the current function, w is the vortex, G=Gr/ReZ, Gr is the Grashoff
number, Gi=Gri/Re2, Gry is the concentration Grashoff number, Re is the
Reynolds number, Pe is the Peclet number, Pe; 1s-the concentration Peclet number,
q is the density of the heat sources, q(T), ¢(T), & (T) are the dimensionless
coefficients of kinematic viscosity, diffusion and thermal diffusivity,
respettively, which are functions of the temperature, Fi are the sources and
discharges defined by the rate constants of the chemical reaction. During
dimensionalization, as the basic dimensional variables we selected R -- the
reactor radius, ug -- the gas mixture injection rate, AT=T1-Ty§ —— the tempera-
ture gradient in the reactor and ey -- the mole concentration of one of the
substances during injection., The dimensionless variables entering dinto equations
(1) (the tilde is omitted there) are expressed in terms of the dimensional ones
as follows:

' = 2R T= “, - Y, &= e el

2 ’

7 = V/a“z,. V= Yewn;, - Yeor., T = %'_73;;' ;

- ¥ = v/‘,,,,(,; &R, G e e

._.____.-G.

£

\
Jd

-

\
)

i
’

~p=-

Figure 1

For the system of equations (1) a study is made of the internal boundary problem
- in the rectangle ajsrsl, Oszg X‘_(half the vertical cross section of the reactor
in Figure 2).
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~

"

Figure 2

The desired soluéion must satisfy the following initial and boundary conditions

Mgt
T AR ,)-, (e oo, whel IS BN O
L"L"7 s L 7 o ',_'1_‘.2 s
7oe 0 N PR ¢
7" = 4 ol N R R A
LN S IR ¢
¥ = etal), ’Z Ui e 0; wE o s
4
p= (-2 ¥ Lo ¢ s o G Tusd; 2: U

LY _p A% - - .
Sy X2 'ﬂ 'a—‘i'-'[)) 7'-0 = ..(, g4 5
T=4- % acr 2d, 2.0k

where Ty (i=1,..., n) are defined by the rate constants of the chemical reaction.

The boundary conditions for w are found approximately in the finite-difference

statement.
- IT. Solution Procedure

In order to solve the system of equations (1), the method based on using the
monotonic approximation of the convective terms by directional difference in
the longitudinal-transverse scheme [2] was used.

A rectangle {OSrSJ?i; alfzsl} will be covered by a nonuniform network
A

j‘)_ = I !“, S a a, ;Vj 'l“."", J'-' N A f
A . -

hy is the variable step size with respect to z
hj is the variable step size with respect to r
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and let us introduce the step size with respect to time T, t"=mr. On the network

Eh the system of equations (1) is approximated by the following finite-
difference system of variable directions

Low . K, (vw) W, (45) ¢ 20 (Y, u‘J)o&-f}

/2 (2)

‘:,’,/ =K, (V) K, (0,@) ¢ 2, (005, w)ec'r« )
— —— 4 -

L K, (57) WK, (4T) <2 (2,7, ) @

= 4 g ~ A -— A (5) -

- g;r <, (ET) Ky (6 T) + 2 (2,7, 7)

- [ 6

] Lot =, (5€) s Ry (48) + 2 (v,0,E )+ £ (e, ) ©
17‘"‘—— j(i(ua) H, (5E) + 2 (06, E) (6 .6) Q)

) ¢ e[, ¥ + @ ® -
Ls/; L [} 7
5+ -

. _L,,J— I w 9) ]

&/ -
B Here #(, ,&{;’5{2, 2,2, Ly L} are difference operators of the type _

APPROVED FOR RELEASE:

X, (vw)-= -L——U'f;f- ‘-r‘—'—’—il w.‘a—*—Liw

2 ‘,101 =

Va-lvil
Z “’nra

F 7)o gl 8 -1y ) T v 5T

Crpy BELT L]

]{1(11, u:) = é—l(—‘ﬁ—t—zﬂ - % “'-")J' r ﬁ—"—‘i’jﬁ;,,,‘l‘- ty '/.‘/ff“‘_':__l&

Aj_(l’,ld,(:))=( '5.),4 fra@ligeg Vo gudiy oy VLu,L ,wﬂ)/

/L,J' 'L T i
i t . _L_(V.'.,A-J,',J -V uT.’L e -‘Zf‘l -V‘_’U e _
] ' t(. v L /g" = |

ot T Tai Tt
2.2 7T)= & (35‘;1',,5 s 47;7 T L i
‘H‘,
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Fani-To Ry
+Zf'(£|'5,j e b :: - ¥ T" - 7""‘ )

".-'5'.’- /LL'
/ o . AL (J___ Vi s -¥i[ 4 Yig - vEfA )
L2 - tJ' "j (3 A ¢ 13'-. 3 é«'
= - - f G G G Gy
I (V‘ul! - Yy _ Y Yedy )
Z’} ‘é—T"‘ 4[&.{ '
- w, w‘h: — .'a:& 4 ned

(TN Wy ey

- Here 4 F
s is the number of the iteration y; TS', T" are the iteration parameters

- Teiee - 7 e L" L

7 B 1 2 e __'__.’
] T¢ R 5 E‘- = 7
ko b

uj, up, V], Vy are the difference approximations of the vertical and radial
velocities, respectively at the obtained nodes of the finite-difference net

Wi =z [(V{).;s' *(""i)n'vl,j’] /"'j’
1{" U‘f{)gg P (te) gy ] /4
a- -2 (% ¥:)i ¢ (% """)«',Ju]

st [ )y e (4 07)aie ]

Uz

The boundary conditions for the vorticity w on the walls are obtained from the
approximation at the boundary of the equation for the current function § [2].

- The system of equations (2-7) is solved by successive passes. First, by the
known values of the current function and the vorticity from equations (4-5) a
new value of the temperature is determined, Then by the known temperature field
and the current function, the concentration distribution and the distribution of
the vorticity o in the new layer are calculated, and, finally, using the new
value of », the current function is calculated. In each time step the equations
for ¢ are iterated to convergence. The iteration parameters are selected accord-
ing to Jordan on the basis of estimates of the difference operator spectrum
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L= (L 'L:)

For determination of the operator spectrum, standard programs were used. The
- boundaries of the operator spectra Lj, L, for the different nets ~useld in the
problem are presented in Table 1.

_ The indicated choice of the iteration parameters insures convergence of the
iteration process in 4-8 iterations. As the convergence criterionof the
iteration process, smallness of the error in the norm Ly is taken

/s
= (Le " @) ko k] P £y ; E4 So0F

III. Results of the Numerical Experiments

A program was written in ALGOL to implement the above-described method. The
calculations were performed on the BESM-6 computer.

1. The first step of the investigation of heat and mass exchanga in the reactor

i is study of the flow structure of the gas mixture without considering the

= multicomponent nature of it. The flows with circulatio. of the gas mixture are
of interest. In this case, the time the gas spends in the reactor increases,
and the reactions take place more efficiently. As the circulation characteristic
let us take the ratio of the maximum value of the current function inside the
region Ypay to the value on the side surface Yygypqe Let us denote the circulation
coefficient I=Y.»/¥yound (for I=1 the circulation is absent).

The numerical solutions were obtained for the values

L =1,6; 3,6; 8,6; 10;

a = 0,I; 0-‘;

Re = 200; 1000; 2000
The results of the calculations are presented in Table 2. Some of the character-
istic versions are presented graphically in Figure (2-5). Isotherms, current
lines and graphs of the distribution of the vertical velocity component of the
gas mixture near the surface of the rod are constructed for each version. All

level lines are numbered, and the values of the functions corresponding to these
nunbers are presented under the figures.

The numerical investigation led, in particular, to the following results.

a) &K=1.6 (Figure 3-4).

For different values, the absolute values of the current velocity of the gas
mixture along the rod differ little from each other. I decreases with an increase

in the injection velocity. For Re=1000 the circulation is absent. A characteris-
tic feature of the flow in the reactor is a shift of the center of the vortex to
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the chamber walls. For Re=200 the appearance of a secondary vortex on the upper

wall is observed (see Figure 2). In all of the temperature field patterms there

is a clearly expressed thermal boundary layer. For large numbers (see Figure 3)

- it is obvious that the heat from the rod is carried away by the flew of cold gas,
and it clearly penetrates into the reactor. For Re=200 (Figure 2), as a result
of the development of free-convective motion, the reactor is better heated.

b) £=3.6 (Figure 5).

By comparison with the preceding case, the circulation and the flow velocity
increase. The remaining qualitative characteristics of the flow vary little.

c) X =8.6 (Figure 6)

With an increase in the rod length the circulation coefficient increases (the
circulation exists even for Re=2000), where with an increase in the rod diameter
- I decreases somewhat.

= 2. In the next step let us consider the convective motion of a four-component

- gas mixture. Let a mixture of gases M and M, be injected into the reactor.
As a result of a number of reactions, a crystalline substance Mg precipitates
out on the rod, which is an electrode. Such processes are characteristic, in
particular, for obtaining substances without impurities [4]. Let us propose that
there are two basic reactions in the reactor:

Homogeneous

Mg+ My == M5+

and heterogeneous, running to the surface of the rod
My —* (1-P)M5 + Pt M3 yhere B < £,

Let the rate of formation of My as a result of the homogeneous reaction have the
form

dé *

and the rate of formation of Mg be the following

('/C’;)’ > /") 3
) S - Uy Cop - Ky Gy

It is of interest to investigate the precipitation rate of Mg as a function of
the flow structure. For this purpose it is necessary to solve the complete

- system of equations (1). Let us assume that the precipitation of the solid phase
be.expressed very slowly by comparison with the time of establishment of the flow,
and the calculations can be performed for fixed values of the rod radius. For
our model problem
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5 Fo»Fy =R =-F =/(1cxc‘“‘

V£

A numerical study was made of the precipitation rate M5 as a function of the
Reynolds number and the rod radius for.. £ =5. Graphs of these relations are
presented in Figures 7-8, respectively.

distribution of the precipitation rate M5 along the rod for a=4, Re=200.
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Figure 9 shows the lines of the concen-
tration levels of the reacting substances under steady-state conditions and the

"Numerical Study of Natural Convection in

Table 1
A 0.1 0.4 0.6
A, | 30653 68917 155000
5. 15.29 28.62 €2.075
Table 2
A=D1 A=0.Y4
- L 1.6 3.6 8.6 1.6 3.6 8.6
. e pr T w1 w1 TLENS SRR SRTTIN
200 1195 17410 240 35 114 6 149 17 268 0
- woquu % 1 w3 23 1 2 -1‘:4 Y2 3
20000141 20 1 27 1.9 13 1 1.; 127 1
- V' = Umase /Vo
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